亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

正激變換器

  • 光伏并網逆變器的研究.rar

    世界環(huán)境的日益惡化和傳統(tǒng)能源的日漸枯竭,促使了對新能源的開發(fā)和發(fā)展。具有可持續(xù)發(fā)展的太陽能資源受到了各國的重視,各國相繼出臺的新能源法對太陽能發(fā)展起到推波助瀾的作用。其中,光伏并網發(fā)電具有深遠的理論價值和現實意義,僅在過去五年,光伏并網電站安裝總量已達到數千兆瓦。而連接光伏陣列和電網的光伏并網逆變器便是整個光伏并網發(fā)電系統(tǒng)的關鍵。 本文根據逆變器結構以及光伏發(fā)電陣列特點,提出了基于DC-DC和DC-AC兩級并網逆變器的結構。基于DC-DC和DC-AC電路的相對獨立性,分別對DC-DC和DC-AC進行詳盡分析,并提出了新的控制策略。在DC-DC轉換器中,采用了Boost電路對太陽能陣列輸出電壓進行調制,并對系統(tǒng)進行最大功率點跟蹤。針對固定電壓法和擾動法跟蹤最大功率點的缺點,提出三點最小二乘最大功率點跟蹤的新算法,實驗證明了該算法能夠準確而迅速的跟蹤系統(tǒng)最大功率點,從而提高系統(tǒng)的利用率,穩(wěn)定系統(tǒng)的輸出電壓。在DC-AC轉換器中,采用輸出電流控制,根據正弦脈沖寬度調制的缺點,提出空間矢量脈沖寬度調制方法對逆變器進行控制,從而提高直流側電壓的利用率,減少諧波。基于SVPWM的控制原理,建立系統(tǒng)模型,結果表明輸出電流與電網電壓保持同相位,從而證明了該控制算法的可行性。 在提出新的控制策略的基礎上,對2kW的三相并網逆變器進行硬件設計,包括主電路DC-DC和DC-AC,驅動電路以及電壓電流檢測電路,過零檢測電路等,為類似結構的光伏并網逆變器提供了設計參考。

    標簽: 光伏并網 逆變器

    上傳時間: 2013-07-16

    上傳用戶:rishian

  • 一種16位音頻SigmaDelta模數轉換器的研究與設計.rar

    Sigma-Delta A/D轉換器利用過采樣,噪聲整形和數字濾波技術,有效衰減了輸出信號帶內的量化噪聲,提高了信噪比。與傳統(tǒng)的Nyquist轉換器相比,它降低了對模擬電路性能指標和元件精度的要求,簡化了模擬電路的設計,降低了生產成本。 本論文在對Sigma-Delta A/D轉換器原理研究的基礎上,基于TSMC0.18um工藝,采用1.8V工作電源,128倍的過采樣率,6.4MHz的采樣頻率,設計了一個主要應用于音頻信號處理的Sigma-Delta A/D轉換器,分辨率達到16位。在調制器的設計中,本文采用了多級噪聲整形MASH(2-1)級聯調制器結構,同時,考慮了各種非理想因素對系統(tǒng)性能的影響,在SDtoolbox工具的幫助下使用Simulink進行調制器系統(tǒng)設計。并使用Cadence Spectre對模塊電路進行設計仿真,包括運放,比較器,帶隙基準電壓源,CMOS開關,非交疊時鐘產生電路等。在數字抽取濾波器的設計中,采用了分級抽取技術,使用MATLAB軟件中的SPTool和FDATool工具對各級抽取濾波器進行優(yōu)化設計。并在原有的濾波器算法的基礎上,采用了CIC濾波器和半帶濾波器,設計出了運算量和存儲量都相對少的三級抽取濾波器系統(tǒng),大大降低了功耗和面積。 論文的仿真結果表明,所設計的Sigma-Delta A/D轉換器信噪比達到102.3dB,滿足系統(tǒng)需要的16位精度要求。 關鍵詞:Sigma-Ddta; 信噪比; 多級噪聲整形; 數字抽取濾波器

    標簽: SigmaDelta 音頻 模數轉換器

    上傳時間: 2013-06-27

    上傳用戶:songyuncen

  • 基于BOOST變換器的高功率因數軟開關電源的研究.rar

    隨著電力電子技術的發(fā)展,對大功率、高性能的開關電源要求也越來越高。功率因數校正(PFC)技術是當前電力電子技術研究的熱點問題。大多數電力電子裝置通過整流器與電網接口,而傳統(tǒng)的二極管或晶閘管整流裝置會產生大量的諧波電流,對電網造成污染。許多國家和國際組織相繼制定了一系列限制用電設備諧波的標準。有源功率因數校正技術能夠有效的消除整流裝置的諧波,因此具有廣泛的應用前景。 本文首先分析了開關電源的發(fā)展現狀及發(fā)展要求,詳細地闡述了開關電源的基本構成和基本組態(tài)。然后研究了ZVT-Boost軟開關PFC電路的基本結構、基本工作原理及軟開關實現原理,在此基礎上確定了主電路結構,并制定了控制系統(tǒng)方案。 鑒于功率要求,本文采用兩級PFC電路。因此對常見的DC-DC變換器的拓撲結構、原理特性進行分析。并針對各自的變換器建立了簡化模型,基于所建立的模型分析了變換器的特性,列出各變換器的優(yōu)缺點及在設計開關電源時的選用原則。最后,對所設計的系統(tǒng)進行了仿真分析。 本文根據用戶的要求研究設計了一種大功率高性能開關電源。該開關電源分為前級和后級,前級為采用BOOST結構的單相有源功率因數校正電路,后級為采用移相控制軟開關技術的全橋變換器。最后研制出了實驗樣機,并給出了實驗樣機的功率因數校正電路和移相全橋軟開關變換電路的實驗波形。

    標簽: BOOST 變換器 高功率因數

    上傳時間: 2013-04-24

    上傳用戶:朗朗乾坤

  • 單相光伏并網逆變器的研究.rar

    逆變器作為光伏陣列和電網接口的主要設備,它的性能決定著整個光伏發(fā)電系統(tǒng)的性能。為了將光伏陣列產生的電能最大限度地饋入電網,并提高其運行的穩(wěn)定度、可靠性和精確度,必須對并網逆變器的主電路拓撲選擇、濾波器參數設計及其控制策略選取等進行深入研究。 論文首先分析了光伏發(fā)電的國內外發(fā)展現狀和應用前景,對光伏并網發(fā)電系統(tǒng)的種類、結構和并網標準進行了綜述。針對眾多適用于光伏并網的逆變器拓撲進行了詳細的比較分析,最終確定了一臺單相滿載功率1kW、并網電壓220V的逆變器拓撲及其主電路參數,對其輸出濾波器參數進行設計,并對其進行了幅頻特性分析。 其次,詳細分析和研究逆變器的并網控制策略,確定了在獨立工作模式下的瞬時電壓控制策略和在并網工作模式下的瞬時電流控制策略。根據選定的控制策略分別對其控制系統(tǒng)進行了建模和閉環(huán)參數設計,并利用Sabet軟件進行系統(tǒng)仿真,驗證了系統(tǒng)建模和設計的正確性。 接著,在分析光伏陣列特性的基礎上,總結和比較了常用的幾種MPPT(Maximum Power Point Tracking)控制方法,通過擾動觀測法對并網逆變器輸出電流的控制,實現了光伏陣列的MPPT,并給出了設計方案和實驗驗證。 最后,根據以上分析結果,研制了一臺基于DSP控制的光伏并網逆變器的試驗樣機,并詳述了其軟硬件的設計方案,給出了相關實驗結果。

    標簽: 單相 光伏并網 逆變器

    上傳時間: 2013-04-24

    上傳用戶:天天天天

  • 級聯式流饋推挽DCDC變換器的研究.rar

    由于下一代微處理器的工作電壓越來越低,所需電流越來越大,現有的5V、12V輸入的電壓調節(jié)模塊(VRM)已經不能滿足它的要求了,因此把VRM的輸入母線電壓提高到48V是必然的趨勢。這樣做能夠減小輸入電流從而使得母線損耗減小,有利于效率提高,同時可以大大減小輸入濾波器體積。 本課題首先分析了VRM的發(fā)展現狀和常用拓撲,以及未來的發(fā)展趨勢,并在此基礎上介紹了級聯式流饋推挽DC/DC變換器的概念。接著,具體分析了Buck與推挽級聯式流饋DC/DC變換器、雙通道交錯并聯型Buck與推挽級聯式流饋DC/DC變換器的原理和工作過程。再接著,分別介紹了Buck與推挽級聯式流饋DC/DC變換器、雙通道交錯并聯型Buck與推挽級聯式流饋DC/DC變換器及其控制同路的建模和設計方法,并給出設計實例。最后,分別用這兩種拓撲結構制作了兩臺48V輸入、3.3V/10A輸出的樣機,并對兩者進行了一定的實驗比較研究,以驗證設計的有效性。

    標簽: DCDC 級聯 變換器

    上傳時間: 2013-07-29

    上傳用戶:gxrui1991

  • 大功率三相逆變器控制與并聯技術研究.rar

    三相逆變器作為交流供電電源的主要部分,廣泛地應用于電動車、電力設備、產業(yè)設備、交通車輛等領域。逆變器的并聯控制技術以其廣泛的應用前景也得到越來越深入地研究。人們對逆變電源的要求越來越高,高性能、高可靠性的大功率逆變器就是當今逆變電源的發(fā)展趨勢之一。提高逆變電源容量主要有兩個途徑,設計大功率的逆變器和采用逆變器并聯技術實現電源模塊化。 為此,本文以兩臺400kVA組合式三相逆變器為對象,采用全數字化控制方式,主要研究了大功率三相逆變器的波形控制技術和并聯控制技術。本文圍繞大功率組合式三相逆變器,對其主電路結構、系統(tǒng)的數學模型、波形控制技術以及并聯系統(tǒng)模型、并聯控制方案進行了較為詳細的分析和研究。分析了適用于大功率的組合式三相逆變器結構,并給出了400kVA組合式三相逆變器的主電路設計。建立和分析了組合式三相逆變器在ABC、αβ、dq 坐標系下的數學模型。針對大功率組合式三相逆變器,采用在dq 坐標系下的三相電壓閉環(huán)統(tǒng)一控制方案。為了使大功率三相逆變器得到較好的輸出電壓波形質量,采用PID 瞬時值電壓反饋控制和重復控制并聯結合的控制方案。分析了PID 控制器和重復控制器的原理,并針對400kVA 三相逆變器的系統(tǒng)性能,給出了相應數字PID 控制器和重復控制器的設計。并利用Matlab 建立了系統(tǒng)的仿真模型,給出了理論研究結果。提出了有效提高系統(tǒng)動態(tài)性能的兩種方法:加負載電流前饋和動態(tài)過程中強制改變改變調制比。介紹了大功率三相逆變器的短路限流保護技術,提出了采用瞬時值限流電路和單獨的軟件限流環(huán)相結合的方案,保證大功率三相逆變器在短路時自動限流保護。對兩臺大功率三相逆變器組成的并聯系統(tǒng)的結構、環(huán)流特性及逆變器的輸出功率進行了分析。詳細分析了輸出阻抗特性不同時,逆變器環(huán)流和輸出功率分配的差異,得出了輸出阻抗對環(huán)流和功率影響的一般規(guī)律。針對大功率三相逆變器并聯系統(tǒng),采用基于功率誤差的分散邏輯控制方案。分析了基于功率誤差的分散邏輯控制原理,逆變器輸出功率的檢測和母線信號綜合的脈寬調制原理。根據400kVA 三相逆變器并聯系統(tǒng)的輸出阻抗特性,采用了無功調節(jié)輸出電壓幅值和同步鎖相實現相位同步的并聯控制策略。 本文最后在兩臺400kVA組合式三相逆變器樣機上得到了實驗驗證。實驗結果進一步驗證了大功率三相逆變器的波形控制和并聯控制策略有效可行性。

    標簽: 大功率 三相逆變器 控制

    上傳時間: 2013-07-03

    上傳用戶:coolloo

  • 一種單相交流斬波變換器的研究.rar

    本文致力于可并聯運行的斬控式單相交流斬波變換器的研究。交交變換技術作為電力電子技術一個重要的領域一直得到人們的關注,但大都將目光投向AC-DC-AC兩級變換上面。AC/AC直接變換具有單級變換、功率密度高、拓撲緊湊簡單、并聯容易等優(yōu)勢,并且具有較強擴展性,故而在工業(yè)加熱、調光電源、異步電機啟動、調速等領域具有重要應用。斬控式AC/AC 電壓變換是一種基于自關斷半導體開關器件及脈寬調制控制方式的新型交流調壓技術。 本文對全數字化的斬控式AC/AC 變換做了系統(tǒng)研究,工作內容主要有:對交流斬波電路的拓撲及其PWM方式做了詳細的推導,著重對不同拓撲的死區(qū)效應進行了分析,并且推導了不同負載情況對電壓控制的影響。重點推導了單相Buck型變換器和Buck-Boost 變換器的拓撲模型,并將單相系統(tǒng)的拓撲開關模式推導到三相的情況,然后分別對單相、三相的情況進行了Matlab仿真。建立了單相Buck 型拓撲的開關周期平均意義下的大信號模型和小信號模型,指導控制器的設計。建立了適合電路工作的基于占空比前饋的電壓瞬時值環(huán)、電壓平均值環(huán)控制策略。在理論分析和仿真驗證的基礎上,建立了一臺基于TMS320F2808數字信號處理器的實驗樣機,完成樣機調試,并完成各項性能指標的測試工作。

    標簽: 單相交流 斬波 變換器

    上傳時間: 2013-04-24

    上傳用戶:visit8888

  • 開關電源功率因數校正的研究.rar

    開關電源以其效率高、功率密度高在電源領域中占主導地位。開關電源多數是通過整流器與電力網相接的,經典的整流器是由二極管或晶閘管組成的一個非線性電路,其輸入電流波形呈脈沖狀,交流網側功率因數很低,在電網中會產生大量的電流諧波和無功功率而污染電網,成為電力公害。開關電源己成為電網最主要的諧波源之一。因此,進行網側功率因數校正成為目前研究的熱點之一。目前研究和應用得較多的高功率因數變換器要用兩級:DC/DC開關變換器串聯。這種電路的最大缺點是需要多個元器件、成本高、效率低,尤其在中小功率場合應用時很不經濟。現在國內外正在開發(fā)研究單級功率因數校正電路,具有很高的功率因數且成本低。因而研究單級功率因數校正及變換技術對抑制諧波污染、開創(chuàng)綠色電源以及實現當今開關電源的小型輕量化具有重大意義。 近年來隨著電子信息產業(yè)的高速發(fā)展,人們對開關電源的需求與日俱增,開關電源。PFC(Power Factor Correction)集成控制器己成為發(fā)展前景十分誘人的朝陽產業(yè)。隨著開關電源的廣泛應用,開關電源PFC集成控制器顯示出了強大的生命力,它具有集成度高、性價比高、外圍電路簡單和性能指標優(yōu)良等優(yōu)點,現已成為開發(fā)各類電源及開關電源模塊的優(yōu)選集成電路。 本文首先闡述了電網污染的危害、功率因數的定義,總結了各種功率因數校正變換器的典型拓撲,對各種拓撲的特點、應用場合及控制方法作了比較分析,著重詳細介紹了反激拓撲的功率因數校正變換器的應用及優(yōu)缺點。最后采用功率因數校正芯片SA7527進行了一個小功率電源的功率因數校正的設計,用實驗驗證了該設計的可行性,結果顯示功率因數能達到0.95左右,達到了較好的功率因數校正效果。

    標簽: 開關電源 功率因數校正

    上傳時間: 2013-06-30

    上傳用戶:czh415

  • 環(huán)形線圈車檢器防誤檢技術研究.rar

    為了解決現有環(huán)形線圈車檢器在工程應用中出現的誤檢問題,尤其是對同一輛大車的多次誤觸發(fā)問題,本文深入研究導致誤檢現象的具體原因,并在這基礎上提出了一套軟硬件的解決方法,以減少誤觸發(fā)現象,提高檢測的準確率。 為了方便測量與調試,本文設計了一個PC端軟件。它與實驗室原有的頻率采集工具一塊配合工作,能實時而直觀地察看車檢器的工作狀況,從而有利于實驗數據的采集與問題分析。通過實驗分析,本文總結了誤檢現象的若干情形,以及導致誤檢問題的主要原因。 針對上述分析的發(fā)現—車檢器采用的單一閾值法不能適應復雜的應用環(huán)境,本文對檢測算法作了改進:對車輛到達的檢測,仍采用單一閾值法;對車輛離開的檢測,則采用平坦性判定法。后者利用了在車輛離開時,線圈頻率從非平坦變?yōu)槠教惯@一特征。它有簡單、易移植和防誤檢的特點。 為了從應用層面解決問題,本文設計了一種基于改進算法的車檢器。與同類車檢器相比,它除了集成上述車檢算法外,還提供一個RS-232的測試端口,按一定的數據協議與PC端的診斷軟件通訊,能夠幫助現場測試工作的開展。 本文還利用了新車檢器做了兩組的實驗:實驗室環(huán)境與高速公路車輛檢測現場環(huán)境下的實驗。第一組驗證了改進算法的防誤檢性能,并計算它的檢測延遲。其中檢測延遲的計算,有助于協調車輛檢測系統(tǒng)中線圈、車檢器與攝像頭三者間的工作。第二組驗證了新車檢器的檢測性能,包括識別和延遲兩方面內容。兩組實驗結果都證實了改進算法的實用價值。

    標簽: 環(huán)形 技術研究 線圈

    上傳時間: 2013-06-16

    上傳用戶:1406054127

  • 三電平變頻器技術的實用化研究.rar

    近年來,在電氣傳動領域中三電平變頻器得到了廣泛的應用。三電平逆變器拓撲結構的出現為高電壓、大功率變頻器的實現提供了一個有效的途徑。研究和開發(fā)三電平大功率變頻器,無論在技術上還是在實際應用上都有十分重要的意義。本文圍繞三電平大功率通用變頻器的實用化技術進行了深入分析和研究。 論文首先介紹了三電平逆變器主電路的拓撲結構、控制要求、基本原理、特性和PWM控制策略以及調試中存在的問題和相關的解決方法。 中點電位不平衡是三電平拓撲結構的一個固有問題。針對這一問題,本論文分析了中點電壓不平衡的根本原因,采用了一種基于滯環(huán)控制的電壓平衡控制方法。該方法根據負載電流方向的不同組合,通過調整小矢量的冗余狀態(tài)和作用時間,并充分考慮到中矢量對中點平衡的影響,動態(tài)調整兩個電容器上的電壓,同時,詳細地分析了當參考電壓矢量落到具有一種或兩種冗余小矢量的小三角形區(qū)間時開關狀態(tài)的選擇、開關序列的順序以及作用時間的分配。 基于載波的調制策略是三電平變頻器采用的主要調制方式之一。本論文對所采用的基于載波的調制策略,作了深入分析,得出了相應的諧波特性。基于諧波總含量,對調制特性的優(yōu)劣進行了比較,同時得出了不同載波調制策略輸出電壓諧波含量與調制度變化的對應關系,并通過實驗和仿真對相關結果進行了驗證。 主電路和控制電路的硬件設計將直接影響到變頻器的運行性能。本論文介紹了在現場實際運行中變頻器的主回路及其控制回路的硬件設計,采用理論計算與實踐驗證相結合的方法得出器件相關參數,并且針對變頻器內外RCD緩沖電路在工作時所產生的電壓不平衡作了分析,詳細的給出了其緩沖吸收電路算法。 最后,把本文的部分研究結果應用于實際工業(yè)現場中,研制了690V/600kW的大功率中壓變頻器,給出了現場運行結果。運行結果表明該變頻器輸出波形良好,性能滿足要求。

    標簽: 三電平 變頻器

    上傳時間: 2013-08-04

    上傳用戶:kirivir

亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
麻豆精品在线播放| 欧美日韩在线视频观看| 亚洲第一综合天堂另类专| 国产欧美二区| 国产亚洲免费的视频看| 国产欧美在线| 韩国在线视频一区| **欧美日韩vr在线| 亚洲精品日韩综合观看成人91| 国产精品嫩草99av在线| 国产精品久久久免费| 国产精品久久久久高潮| 国产精品99久久99久久久二8| 亚洲制服丝袜在线| 久久综合伊人77777蜜臀| 国产精品成人在线| 亚洲激情另类| 久久不射电影网| 欧美日韩国产美女| 激情视频一区二区| 亚洲一区3d动漫同人无遮挡| 久久久久久久91| 国产精品免费福利| 亚洲日本电影| 美女久久一区| 国产精品入口66mio| 99riav久久精品riav| 麻豆久久精品| 黄色一区二区三区| 欧美一级视频免费在线观看| 欧美母乳在线| 亚洲国产精品尤物yw在线观看| 久久国产精品99国产| 国产精品美女在线| 日韩午夜免费视频| 欧美国产日本韩| 一区二区三区亚洲| 久久精品中文字幕免费mv| 国产欧美日本一区视频| 亚洲尤物在线视频观看| 国产精品超碰97尤物18| 99精品国产一区二区青青牛奶| 欧美成人国产| 亚洲国产一区二区三区在线播| 久久中文字幕一区| 狠狠色狠色综合曰曰| 久久久久久久久久久久久9999| 国产欧美一区二区三区视频| 亚洲在线一区二区三区| 欧美网站在线观看| 亚洲一区二区三区成人在线视频精品| 欧美片第1页综合| av成人激情| 国产精品99免视看9| 亚洲综合色自拍一区| 国产精品久久久久影院色老大| 亚洲视频在线观看| 国产精品美女一区二区| 欧美在线不卡视频| 黄色小说综合网站| 久久综合伊人| 亚洲肉体裸体xxxx137| 欧美日韩亚洲高清| 亚洲欧美日韩国产精品| 国产欧美日韩专区发布| 久久av资源网站| 在线成人h网| 欧美麻豆久久久久久中文| 一本色道久久88综合亚洲精品ⅰ| 欧美日韩亚洲网| 性欧美超级视频| 在线播放豆国产99亚洲| 欧美精品一区二区三区视频| 亚洲婷婷在线| 国产一区香蕉久久| 欧美成人三级在线| 亚洲图片欧洲图片av| 国产一区二区丝袜高跟鞋图片| 免费欧美电影| 99热免费精品在线观看| 国产日韩精品久久久| 男人的天堂亚洲在线| 国产精品99久久久久久有的能看 | 蜜桃av综合| 亚洲人成毛片在线播放女女| 欧美日韩国产成人在线观看| 午夜天堂精品久久久久| 黄色综合网站| 欧美日韩综合在线免费观看| 羞羞答答国产精品www一本| 一区二区三区在线观看欧美| 欧美肥婆在线| 新67194成人永久网站| 亚洲高清不卡在线| 国产精品久久久久久av福利软件| 久久在线免费观看| 一区二区免费看| 在线观看亚洲精品| 国产精品久久久亚洲一区 | 国产一区二区精品久久91| 久久久久国产精品一区三寸 | 亚洲国产精品福利| 国产精品第三页| 女人天堂亚洲aⅴ在线观看| 亚洲视频网在线直播| 在线观看亚洲一区| 国产麻豆精品视频| 欧美日韩不卡视频| 久久久久久久久久久成人| 国产精品99久久久久久久久久久久 | 亚洲黄色免费网站| 国产一区二区高清视频| 欧美三级韩国三级日本三斤| 玖玖综合伊人| 欧美有码在线观看视频| 亚洲一本视频| 99v久久综合狠狠综合久久| 国产最新精品精品你懂的| 国产精品久久久久久久久免费樱桃| 欧美成人精品h版在线观看| 久久精品视频网| 午夜精彩国产免费不卡不顿大片| 亚洲精品乱码久久久久久蜜桃91| 国内精品一区二区三区| 国产精品一二三四| 国产精品看片资源| 欧美视频在线看| 欧美日韩不卡一区| 欧美激情a∨在线视频播放| 久久综合伊人77777麻豆| 久久国产成人| 欧美中文字幕久久| 欧美影院一区| 欧美在线观看网站| 欧美一区二区三区免费大片| 亚洲欧美亚洲| 午夜欧美电影在线观看| 亚洲欧美日韩国产精品| 亚洲直播在线一区| 亚洲欧美日韩专区| 午夜精品久久久| 性色一区二区| 久久精品国产综合精品| 欧美一区观看| 久久黄色网页| 鲁大师影院一区二区三区| 蜜桃久久精品一区二区| 欧美sm视频| 欧美精品亚洲一区二区在线播放| 欧美韩日亚洲| 欧美精品九九| 欧美涩涩网站| 国产精品羞羞答答| 国产一区再线| 亚洲黄色成人久久久| 亚洲日本中文字幕免费在线不卡| 亚洲精品日日夜夜| 中文网丁香综合网| 欧美一区二区三区啪啪| 久久久久国色av免费看影院| 美女精品在线| 欧美日韩在线视频一区二区| 国产精品一区二区三区乱码| 韩日视频一区| 亚洲精品少妇30p| 亚洲一区二区三区激情| 久久国产66| 欧美黄网免费在线观看| 欧美日韩在线电影| 国产日韩欧美精品一区| 在线欧美日韩国产| 99国产精品| 欧美一区二区在线| 欧美粗暴jizz性欧美20| 国产精品久久一区主播| 欲色影视综合吧| 亚洲一区二区欧美日韩| 久久露脸国产精品| 欧美日韩三级视频| 国产嫩草一区二区三区在线观看| 精品999成人| 国产精品99久久久久久宅男| 欧美一区二区精美| 欧美精品在线视频| 国产亚洲在线| 99亚洲视频| 久久免费黄色| 国产精品成人在线| 永久555www成人免费| 国产精品99久久久久久白浆小说| 久久久夜夜夜| 欧美视频日韩视频在线观看| 国产午夜一区二区三区| 日韩视频在线免费| 久久九九国产精品怡红院| 欧美日韩国产小视频在线观看| 国内精品免费在线观看| 亚洲午夜精品久久| 男女精品视频| 国产亚洲精品激情久久|