亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

氣敏

  • 單片機應用系統抗干擾技術

    單片機應用系統抗干擾技術:第1章 電磁干擾控制基礎. 1.1 電磁干擾的基本概念1 1.1.1 噪聲與干擾1 1.1.2 電磁干擾的形成因素2 1.1.3 干擾的分類2 1.2 電磁兼容性3 1.2.1 電磁兼容性定義3 1.2.2 電磁兼容性設計3 1.2.3 電磁兼容性常用術語4 1.2.4 電磁兼容性標準6 1.3 差模干擾和共模干擾8 1.3.1 差模干擾8 1.3.2 共模干擾9 1.4 電磁耦合的等效模型9 1.4.1 集中參數模型9 1.4.2 分布參數模型10 1.4.3 電磁波輻射模型11 1.5 電磁干擾的耦合途徑14 1.5.1 傳導耦合14 1.5.2 感應耦合(近場耦合)15 .1.5.3 電磁輻射耦合(遠場耦合)15 1.6 單片機應用系統電磁干擾控制的一般方法16 第2章 數字信號耦合與傳輸機理 2.1 數字信號與電磁干擾18 2.1.1 數字信號的開關速度與頻譜18 2.1.2 開關暫態電源尖峰電流噪聲22 2.1.3 開關暫態接地反沖噪聲24 2.1.4 高速數字電路的EMI特點25 2.2 導線阻抗與線間耦合27 2.2.1 導體交直流電阻的計算27 2.2.2 導體電感量的計算29 2.2.3 導體電容量的計算31 2.2.4 電感耦合分析32 2.2.5 電容耦合分析35 2.3 信號的長線傳輸36 2.3.1 長線傳輸過程的數學描述36 2.3.2 均勻傳輸線特性40 2.3.3 傳輸線特性阻抗計算42 2.3.4 傳輸線特性阻抗的重復性與阻抗匹配44 2.4 數字信號傳輸過程中的畸變45 2.4.1 信號傳輸的入射畸變45 2.4.2 信號傳輸的反射畸變46 2.5 信號傳輸畸變的抑制措施49 2.5.1 最大傳輸線長度的計算49 2.5.2 端點的阻抗匹配50 2.6 數字信號的輻射52 2.6.1 差模輻射52 2.6.2 共模輻射55 2.6.3 差模和共模輻射比較57 第3章 常用元件的可靠性能與選擇 3.1 元件的選擇與降額設計59 3.1.1 元件的選擇準則59 3.1.2 元件的降額設計59 3.2 電阻器60 3.2.1 電阻器的等效電路60 3.2.2 電阻器的內部噪聲60 3.2.3 電阻器的溫度特性61 3.2.4 電阻器的分類與主要參數62 3.2.5 電阻器的正確選用66 3.3 電容器67 3.3.1 電容器的等效電路67 3.3.2 電容器的種類與型號68 3.3.3 電容器的標志方法70 3.3.4 電容器引腳的電感量71 3.3.5 電容器的正確選用71 3.3.6 電容器使用注意事項73 3.4 電感器73 3.4.1 電感器的等效電路74 3.4.2 電感器使用的注意事項74 3.5 數字集成電路的抗干擾性能75 3.5.1 噪聲容限與抗干擾能力75 3.5.2 施密特集成電路的噪聲容限77 3.5.3 TTL數字集成電路的抗干擾性能78 3.5.4 CMOS數字集成電路的抗干擾性能79 3.5.5 CMOS電路使用中注意事項80 3.5.6 集成門電路系列型號81 3.6 高速CMOS 54/74HC系列接口設計83 3.6.1 54/74HC 系列芯片特點83 3.6.2 74HC與TTL接口85 3.6.3 74HC與單片機接口85 3.7 元器件的裝配工藝對可靠性的影響86 第4章 電磁干擾硬件控制技術 4.1 屏蔽技術88 4.1.1 電場屏蔽88 4.1.2 磁場屏蔽89 4.1.3 電磁場屏蔽91 4.1.4 屏蔽損耗的計算92 4.1.5 屏蔽體屏蔽效能的計算99 4.1.6 屏蔽箱的設計100 4.1.7 電磁泄漏的抑制措施102 4.1.8 電纜屏蔽層的屏蔽原理108 4.1.9 屏蔽與接地113 4.1.10 屏蔽設計要點113 4.2 接地技術114 4.2.1 概述114 4.2.2 安全接地115 4.2.3 工作接地117 4.2.4 接地系統的布局119 4.2.5 接地裝置和接地電阻120 4.2.6 地環路問題121 4.2.7 浮地方式122 4.2.8 電纜屏蔽層接地123 4.3 濾波技術126 4.3.1 濾波器概述127 4.3.2 無源濾波器130 4.3.3 有源濾波器138 4.3.4 鐵氧體抗干擾磁珠143 4.3.5 貫通濾波器146 4.3.6 電纜線濾波連接器149 4.3.7 PCB板濾波器件154 4.4 隔離技術155 4.4.1 光電隔離156 4.4.2 繼電器隔離160 4.4.3 變壓器隔離 161 4.4.4 布線隔離161 4.4.5 共模扼流圈162 4.5 電路平衡結構164 4.5.1 雙絞線在平衡電路中的使用164 4.5.2 同軸電纜的平衡結構165 4.5.3 差分放大器165 4.6 雙絞線的抗干擾原理及應用166 4.6.1 雙絞線的抗干擾原理166 4.6.2 雙絞線的應用168 4.7 信號線間的串擾及抑制169 4.7.1 線間串擾分析169 4.7.2 線間串擾的抑制173 4.8 信號線的選擇與敷設174 4.8.1 信號線型式的選擇174 4.8.2 信號線截面的選擇175 4.8.3 單股導線的阻抗分析175 4.8.4 信號線的敷設176 4.9 漏電干擾的防止措施177 4.10 抑制數字信號噪聲常用硬件措施177 4.10.1 數字信號負傳輸方式178 4.10.2 提高數字信號的電壓等級178 4.10.3 數字輸入信號的RC阻容濾波179 4.10.4 提高輸入端的門限電壓181 4.10.5 輸入開關觸點抖動干擾的抑制方法181 4.10.6 提高器件的驅動能力184 4.11 靜電放電干擾及其抑制184 第5章 主機單元配置與抗干擾設計 5.1 單片機主機單元組成特點186 5.1.1 80C51最小應用系統186 5.1.2 低功耗單片機最小應用系統187 5.2 總線的可靠性設計191 5.2.1 總線驅動器191 5.2.2 總線的負載平衡192 5.2.3 總線上拉電阻的配置192 5.3 芯片配置與抗干擾193 5.3.1去耦電容配置194 5.3.2 數字輸入端的噪聲抑制194 5.3.3 數字電路不用端的處理195 5.3.4 存儲器的布線196 5.4 譯碼電路的可靠性分析197 5.4.1 過渡干擾與譯碼選通197 5.4.2 譯碼方式與抗干擾200 5.5 時鐘電路配置200 5.6 復位電路設計201 5.6.1 復位電路RC參數的選擇201 5.6.2 復位電路的可靠性與抗干擾分析202 5.6.3 I/O接口芯片的延時復位205 5.7 單片機系統的中斷保護問題205 5.7.1 80C51單片機的中斷機構205 5.7.2 常用的幾種中斷保護措施205 5.8 RAM數據掉電保護207 5.8.1 片內RAM數據保護207 5.8.2 利用雙片選的外RAM數據保護207 5.8.3 利用DS1210實現外RAM數據保護208 5.8.4 2 KB非易失性隨機存儲器DS1220AB/AD211 5.9 看門狗技術215 5.9.1 由單穩態電路實現看門狗電路216 5.9.2 利用單片機片內定時器實現軟件看門狗217 5.9.3 軟硬件結合的看門狗技術219 5.9.4 單片機內配置看門狗電路221 5.10 微處理器監控器223 5.10.1 微處理器監控器MAX703~709/813L223 5.10.2 微處理器監控器MAX791227 5.10.3 微處理器監控器MAX807231 5.10.4 微處理器監控器MAX690A/MAX692A234 5.10.5 微處理器監控器MAX691A/MAX693A238 5.10.6 帶備份電池的微處理器監控器MAX1691242 5.11 串行E2PROM X25045245 第6章 測量單元配置與抗干擾設計 6.1 概述255 6.2 模擬信號放大器256 6.2.1 集成運算放大器256 6.2.2 測量放大器組成原理260 6.2.3 單片集成測量放大器AD521263 6.2.4 單片集成測量放大器AD522265 6.2.5 單片集成測量放大器AD526266 6.2.6 單片集成測量放大器AD620270 6.2.7 單片集成測量放大器AD623274 6.2.8 單片集成測量放大器AD624276 6.2.9 單片集成測量放大器AD625278 6.2.10 單片集成測量放大器AD626281 6.3 電壓/電流變換器(V/I)283 6.3.1 V/I變換電路..283 6.3.2 集成V/I變換器XTR101284 6.3.3 集成V/I變換器XTR110289 6.3.4 集成V/I變換器AD693292 6.3.5 集成V/I變換器AD694299 6.4 電流/電壓變換器(I/V)302 6.4.1 I/V變換電路302 6.4.2 RCV420型I/V變換器303 6.5 具有放大、濾波、激勵功能的模塊2B30/2B31305 6.6 模擬信號隔離放大器313 6.6.1 隔離放大器ISO100313 6.6.2 隔離放大器ISO120316 6.6.3 隔離放大器ISO122319 6.6.4 隔離放大器ISO130323 6.6.5 隔離放大器ISO212P326 6.6.6 由兩片VFC320組成的隔離放大器329 6.6.7 由兩光耦組成的實用線性隔離放大器333 6.7 數字電位器及其應用336 6.7.1 非易失性數字電位器x9221336 6.7.2 非易失性數字電位器x9241343 6.8 傳感器供電電源的配置及抗干擾346 6.8.1 傳感器供電電源的擾動補償347 6.8.2 單片集成精密電壓芯片349 6.8.3 A/D轉換器芯片提供基準電壓350 6.9 測量單元噪聲抑制措施351 6.9.1 外部噪聲源的干擾及其抑制351 6.9.2 輸入信號串模干擾的抑制352 6.9.3 輸入信號共模干擾的抑制353 6.9.4 儀器儀表的接地噪聲355 第7章 D/A、A/D單元配置與抗干擾設計 7.1 D/A、A/D轉換器的干擾源357 7.2 D/A轉換原理及抗干擾分析358 7.2.1 T型電阻D/A轉換器359 7.2.2 基準電源精度要求361 7.2.3 D/A轉換器的尖峰干擾362 7.3 典型D/A轉換器與單片機接口363 7.3.1 并行12位D/A轉換器AD667363 7.3.2 串行12位D/A轉換器MAX5154370 7.4 D/A轉換器與單片機的光電接口電路377 7.5 A/D轉換器原理與抗干擾性能378 7.5.1 逐次比較式ADC原理378 7.5.2 余數反饋比較式ADC原理378 7.5.3 雙積分ADC原理380 7.5.4 V/F ADC原理382 7.5.5 ∑Δ式ADC原理384 7.6 典型A/D轉換器與單片機接口387 7.6.18 位并行逐次比較式MAX 118387 7.6.28 通道12位A/D轉換器MAX 197394 7.6.3 雙積分式A/D轉換器5G14433399 7.6.4 V/F轉換器AD 652在A/D轉換器中的應用403 7.7 采樣保持電路與抗干擾措施408 7.8 多路模擬開關與抗干擾措施412 7.8.1 CD4051412 7.8.2 AD7501413 7.8.3 多路開關配置與抗干擾技術413 7.9 D/A、A/D轉換器的電源、接地與布線416 7.10 精密基準電壓電路與噪聲抑制416 7.10.1 基準電壓電路原理417 7.10.2 引腳可編程精密基準電壓源AD584418 7.10.3 埋入式齊納二極管基準AD588420 7.10.4 低漂移電壓基準MAX676/MAX677/MAX678422 7.10.5 低功率低漂移電壓基準MAX873/MAX875/MAX876424 7.10.6 MC1403/MC1403A、MC1503精密電壓基準電路430 第8章 功率接口與抗干擾設計 8.1 功率驅動元件432 8.1.1 74系列功率集成電路432 8.1.2 75系列功率集成電路433 8.1.3 MOC系列光耦合過零觸發雙向晶閘管驅動器435 8.2 輸出控制功率接口電路438 8.2.1 繼電器輸出驅動接口438 8.2.2 繼電器—接觸器輸出驅動電路439 8.2.3 光電耦合器—晶閘管輸出驅動電路439 8.2.4 脈沖變壓器—晶閘管輸出電路440 8.2.5 單片機與大功率單相負載的接口電路441 8.2.6 單片機與大功率三相負載間的接口電路442 8.3 感性負載電路噪聲的抑制442 8.3.1 交直流感性負載瞬變噪聲的抑制方法442 8.3.2 晶閘管過零觸發的幾種形式445 8.3.3 利用晶閘管抑制感性負載的瞬變噪聲447 8.4 晶閘管變流裝置的干擾和抑制措施448 8.4.1 晶閘管變流裝置電氣干擾分析448 8.4.2 晶閘管變流裝置的抗干擾措施449 8.5 固態繼電器451 8.5.1 固態繼電器的原理和結構451 8.5.2 主要參數與選用452 8.5.3 交流固態繼電器的使用454 第9章 人機對話單元配置與抗干擾設計 9.1 鍵盤接口抗干擾問題456 9.2 LED顯示器的構造與特點458 9.3 LED的驅動方式459 9.3.1 采用限流電阻的驅動方式459 9.3.2 采用LM317的驅動方式460 9.3.3 串聯二極管壓降驅動方式462 9.4 典型鍵盤/顯示器接口芯片與單片機接口463 9.4.1 8位LED驅動器ICM 7218B463 9.4.2 串行LED顯示驅動器MAX 7219468 9.4.3 并行鍵盤/顯示器專用芯片8279482 9.4.4 串行鍵盤/顯示器專用芯片HD 7279A492 9.5 LED顯示接口的抗干擾措施502 9.5.1 LED靜態顯示接口的抗干擾502 9.5.2 LED動態顯示接口的抗干擾506 9.6 打印機接口與抗干擾技術508 9.6.1 并行打印機標準接口信號508 9.6.2 打印機與單片機接口電路509 9.6.3 打印機電磁干擾的防護設計510 9.6.4 提高數據傳輸可靠性的措施512 第10章 供電電源的配置與抗干擾設計 10.1 電源干擾問題概述513 10.1.1 電源干擾的類型513 10.1.2 電源干擾的耦合途徑514 10.1.3 電源的共模和差模干擾515 10.1.4 電源抗干擾的基本方法516 10.2 EMI電源濾波器517 10.2.1 實用低通電容濾波器518 10.2.2 雙繞組扼流圈的應用518 10.3 EMI濾波器模塊519 10.3.1 濾波器模塊基礎知識519 10.3.2 電源濾波器模塊521 10.3.3 防雷濾波器模塊531 10.3.4 脈沖群抑制模塊532 10.4 瞬變干擾吸收器件532 10.4.1 金屬氧化物壓敏電阻(MOV)533 10.4.2 瞬變電壓抑制器(TVS)537 10.5 電源變壓器的屏蔽與隔離552 10.6 交流電源的供電抗干擾方案553 10.6.1 交流電源配電方式553 10.6.2 交流電源抗干擾綜合方案555 10.7 供電直流側抑制干擾措施555 10.7.1 整流電路的高頻濾波555 10.7.2 串聯型直流穩壓電源配置與抗干擾556 10.7.3 集成穩壓器使用中的保護557 10.8 開關電源干擾的抑制措施559 10.8.1 開關噪聲的分類559 10.8.2 開關電源噪聲的抑制措施560 10.9 微機用不間斷電源UPS561 10.10 采用晶閘管無觸點開關消除瞬態干擾設計方案564 第11章 印制電路板的抗干擾設計 11.1 印制電路板用覆銅板566 11.1.1 覆銅板材料566 11.1.2 覆銅板分類568 11.1.3 覆銅板的標準與電性能571 11.1.4 覆銅板的主要特點和應用583 11.2 印制板布線設計基礎585 11.2.1 印制板導線的阻抗計算585 11.2.2 PCB布線結構和特性阻抗計算587 11.2.3 信號在印制板上的傳播速度589 11.3 地線和電源線的布線設計590 11.3.1 降低接地阻抗的設計590 11.3.2 減小電源線阻抗的方法591 11.4 信號線的布線原則592 11.4.1 信號傳輸線的尺寸控制592 11.4.2 線間串擾控制592 11.4.3 輻射干擾的抑制593 11.4.4 反射干擾的抑制594 11.4.5 微機自動布線注意問題594 11.5 配置去耦電容的方法594 11.5.1 電源去耦595 11.5.2 集成芯片去耦595 11.6 芯片的選用與器件布局596 11.6.1 芯片選用指南596 11.6.2 器件的布局597 11.6.3 時鐘電路的布置598 11.7 多層印制電路板599 11.7.1 多層印制板的結構與特點599 11.7.2 多層印制板的布局方案600 11.7.3 20H原則605 11.8 印制電路板的安裝和板間配線606 第12章 軟件抗干擾原理與方法 12.1 概述607 12.1.1 測控系統軟件的基本要求607 12.1.2 軟件抗干擾一般方法607 12.2 指令冗余技術608 12.2.1 NOP的使用609 12.2.2 重要指令冗余609 12.3 軟件陷阱技術609 12.3.1 軟件陷阱609 12.3.2 軟件陷阱的安排610 12.4 故障自動恢復處理程序613 12.4.1 上電標志設定614 12.4.2 RAM中數據冗余保護與糾錯616 12.4.3 軟件復位與中斷激活標志617 12.4.4 程序失控后恢復運行的方法618 12.5 數字濾波619 12.5.1 程序判斷濾波法620 12.5.2 中位值濾波法620 12.5.3 算術平均濾波法621 12.5.4 遞推平均濾波法623 12.5.5 防脈沖干擾平均值濾波法624 12.5.6 一階滯后濾波法626 12.6 干擾避開法627 12.7 開關量輸入/輸出軟件抗干擾設計629 12.7.1 開關量輸入軟件抗干擾措施629 12.7.2 開關量輸出軟件抗干擾措施629 12.8 編寫軟件的其他注意事項630 附錄 電磁兼容器件選購信息632

    標簽: 單片機 應用系統 抗干擾技術

    上傳時間: 2013-10-20

    上傳用戶:xdqm

  • 哈工大DSP2407精品課件

    (1) TMS320LF240XDSP硬件開發教程,江思敏,機械工業出版社。(2) TMS320LF240XDSP應用程序設計教程,清源科技,機械工業出版社。(3)TMS320C2000系列DSP原理及應用,張衛寧,國防工業出版社(4) DSP技術的發展與應用,彭啟宗,高等教育出版社.(5) 數字信號處理器技術原理與開發應用,王軍寧,高等教育出版社。

    標簽: 2407 DSP 精品課

    上傳時間: 2013-10-25

    上傳用戶:zxh122

  • 基于UKF的組網雷達誤差配準方法研究

    針對多目標情況下雷達組網的誤差配準問題,提出了一種基于不敏卡爾曼濾波(Unscented Kalman Filter,UKF)和最優壓縮的系統偏差穩健估計方法。該算法將目標的運動狀態和傳感器系統偏差組合在同一狀態方程中,構建擴維的系統偏差動態方程,接著采用UKF的方法對目標狀態和系統偏差進行聯合估計。然后通過對多個估計結果的進一步融合,最終得到較高精度的系統偏差估計。仿真結果表明,該算法可以有效地實現多目標情況下的誤差配準。

    標簽: UKF 組網 方法研究 雷達

    上傳時間: 2013-11-24

    上傳用戶:guojin_0704

  • HAL543單極霍爾開關PDF 霍爾IC 霍爾開關資料SOT89

    電動車磁控開關,霍爾傳感器,磁敏三極管,霍爾開關 漁具用磁控三極管,磁感應開關,霍爾效應傳感器 磁敏三極管 霍爾元件 提供選型指導 單極性霍爾開關

    標簽: HAL 543 SOT

    上傳時間: 2013-10-16

    上傳用戶:angle

  • 集成溫度傳感器的分類和應用

    一、傳感器的定義信息處理技術取得的進展以及微處理器和計算機技術的高速發展,都需要在傳感器的開發方面有相應的進展。微處理器現在已經在測量和控制系統中得到了廣泛的應用。隨著這些系統能力的增強,作為信息采集系統的前端單元,傳感器的作用越來越重要。傳感器已成為自動化系統和機器人技術中的關鍵部件,作為系統中的一個結構組成,其重要性變得越來越明顯。最廣義地來說,傳感器是一種能把物理量或化學量轉變成便于利用的電信號的器件。國際電工委員會(IEC:International Electrotechnical Committee)的定義為:“傳感器是測量系統中的一種前置部件,它將輸入變量轉換成可供測量的信號”。按照Gopel等的說法是:“傳感器是包括承載體和電路連接的敏感元件”,而“傳感器系統則是組合有某種信息處理(模擬或數字)能力的傳感器”。傳感器是傳感器系統的一個組成部分,它是被測量信號輸入的第一道關口。傳感器系統的原則框圖示于圖1-1,進入傳感器的信號幅度是很小的,而且混雜有干擾信號和噪聲。為了方便隨后的處理過程,首先要將信號整形成具有最佳特性的波形,有時還需要將信號線性化,該工作是由放大器、濾波器以及其他一些模擬電路完成的。在某些情況下,這些電路的一部分是和傳感器部件直接相鄰的。成形后的信號隨后轉換成數字信號,并輸入到微處理器。德國和俄羅斯學者認為傳感器應是由二部分組成的,即直接感知被測量信號的敏感元件部分和初始處理信號的電路部分。按這種理解,傳感器還包含了信號成形器的電路部分。傳感器系統的性能主要取決于傳感器,傳感器把某種形式的能量轉換成另一種形式的能量。有兩類傳感器:有源的和無源的。有源傳感器能將一種能量形式直接轉變成另一種,不需要外接的能源或激勵源(參閱圖1-2(a))。有源(a)和無源(b)傳感器的信號流程無源傳感器不能直接轉換能量形式,但它能控制從另一輸入端輸入的能量或激勵能傳感器承擔將某個對象或過程的特定特性轉換成數量的工作。其“對象”可以是固體、液體或氣體,而它們的狀態可以是靜態的,也可以是動態(即過程)的。對象特性被轉換量化后可以通過多種方式檢測。對象的特性可以是物理性質的,也可以是化學性質的。按照其工作原理,傳感器將對象特性或狀態參數轉換成可測定的電學量,然后將此電信號分離出來,送入傳感器系統加以評測或標示。各種物理效應和工作機理被用于制作不同功能的傳感器。傳感器可以直接接觸被測量對象,也可以不接觸。用于傳感器的工作機制和效應類型不斷增加,其包含的處理過程日益完善。常將傳感器的功能與人類5大感覺器官相比擬: 光敏傳感器——視覺;聲敏傳感器——聽覺;氣敏傳感器——嗅覺;化學傳感器——味覺;壓敏、溫敏、流體傳感器——觸覺。與當代的傳感器相比,人類的感覺能力好得多,但也有一些傳感器比人的感覺功能優越,例如人類沒有能力感知紫外或紅外線輻射,感覺不到電磁場、無色無味的氣體等。對傳感器設定了許多技術要求,有一些是對所有類型傳感器都適用的,也有只對特定類型傳感器適用的特殊要求。針對傳感器的工作原理和結構在不同場合均需要的基本要求是: 高靈敏度,抗干擾的穩定性(對噪聲不敏感),線性,容易調節(校準簡易),高精度,高可靠性,無遲滯性,工作壽命長(耐用性) ,可重復性,抗老化,高響應速率,抗環境影響(熱、振動、酸、堿、空氣、水、塵埃)的能力 ,選擇性,安全性(傳感器應是無污染的),互換性 低成本 ,寬測量范圍,小尺寸、重量輕和高強度,寬工作溫度范圍 。二、傳感器的分類可以用不同的觀點對傳感器進行分類:它們的轉換原理(傳感器工作的基本物理或化學效應);它們的用途;它們的輸出信號類型以及制作它們的材料和工藝等。根據傳感器工作原理,可分為物理傳感器和化學傳感器二大類:傳感器工作原理的分類物理傳感器應用的是物理效應,諸如壓電效應,磁致伸縮現象,離化、極化、熱電、光電、磁電等效應。被測信號量的微小變化都將轉換成電信號。化學傳感器包括那些以化學吸附、電化學反應等現象為因果關系的傳感器,被測信號量的微小變化也將轉換成電信號。有些傳感器既不能劃分到物理類,也不能劃分為化學類。大多數傳感器是以物理原理為基礎運作的。化學傳感器技術問題較多,例如可靠性問題,規模生產的可能性,價格問題等,解決了這類難題,化學傳感器的應用將會有巨大增長。常見傳感器的應用領域和工作原理列于表1.1。按照其用途,傳感器可分類為: 壓力敏和力敏傳感器 ,位置傳感器 , 液面傳感器 能耗傳感器 ,速度傳感器 ,熱敏傳感器,加速度傳感器,射線輻射傳感器 ,振動傳感器,濕敏傳感器 ,磁敏傳感器,氣敏傳感器,真空度傳感器,生物傳感器等。以其輸出信號為標準可將傳感器分為: 模擬傳感器——將被測量的非電學量轉換成模擬電信號。數字傳感器——將被測量的非電學量轉換成數字輸出信號(包括直接和間接轉換)。膺數字傳感器——將被測量的信號量轉換成頻率信號或短周期信號的輸出(包括直接或間接轉換)。開關傳感器——當一個被測量的信號達到某個特定的閾值時,傳感器相應地輸出一個設定的低電平或高電平信號。

    標簽: 集成 溫度傳感器 分類

    上傳時間: 2013-10-11

    上傳用戶:zhangdebiao

  • 電子基本技能實訓

    電子元器件   任何一個電子電路,都是由電子元器件組合而成。了解常用元器件的性能、型號規格、組成分類及識別方法,用簡單測試的方法判斷元器件的好壞,是選擇、使用電子元器件的基礎,是組裝、調試電子電路必須具備的技術技能。下面我們首先分別介紹電阻器、電容器、電感器、繼電器、晶體管、光電器件、集成電路等元器件的基本知識1 .電阻器電阻器在電路中起限流、分流、降壓、分壓、負載、匹配等作用。1.1電阻器的分類電阻器按其結構可分為三類,即固定電阻器、可變電阻器(電位器)和敏感電阻器。按組成材料的不同,又可分為炭膜電阻器、金屬膜電阻器、線繞電阻器、熱敏電阻器、壓敏電阻器等。常用電阻器的外形圖如圖1.1 1.2 電阻器的參數及標注方法電阻器的參數很多,通常考慮的有標稱阻值、額定功率和允許偏差等。(1)、標稱阻值和允許誤差 電阻器的標稱阻值是指電阻器上標出的名義阻值。而實際阻值與標稱阻值之間允許的最大偏差范圍叫做阻值允許偏差,一般用標稱阻值與實際阻值之差除以標稱阻值所得的百分數表示,又稱阻值誤差。普通電阻器阻值誤差分三個等級:允許誤差小于±5﹪的稱Ⅰ級,允許誤差小于±10﹪的稱Ⅱ級,允許誤差小于±20﹪的稱Ⅲ級。表示電阻器的阻值和誤差的方法有兩種:一是直標法,二是色標法。直標法是將電阻的阻值直接用數字標注在電阻上;色標法是用不同顏色的色環來表示電阻器的阻值和誤差,其規定如表1.1(a)和(b)。      用色標法表示電阻時,根據阻值的精密情況又分為兩種:一是普通型電阻,電阻體上有四條色環,前兩條表示數字,第三條表示倍乘,第四條表示誤差。二是精密型電阻,電阻體上有五條色環,前三條表示數字,第四條表示倍乘,第五條表示誤差。通用電阻器的標稱阻值系列如表1.2所示,任何電阻器的標稱阻值都應為表1.2所列數值乘以10nΩ,其中n為整數。(2)、電阻器的額定功率    電阻器的額定功率指電阻器在直流或交流電路中,長期連續工作所允許消耗的最大功率。常用的額定功率有1/8W、1/4W、1/2W、1W、2W、5W、10W、25W等。電阻器的額定功率有兩種表示方法,一是2W以上的電阻,直接用阿拉伯數字標注在電阻體上,二是2W以下的炭膜或金屬膜電阻,可以根據其幾何尺寸判斷其額定功率的大小如表1.3。3 電阻器的簡單測試       電阻器的好壞可以用儀表測試,電阻器阻值的大小也可以用有關儀器、儀表測出,測試電阻值通常有兩種方法,一是直接測試法,另一種是間接測試法。(1).直接測試法就是直接用歐姆表、電橋等儀器儀表測出電阻器阻值的方法。通常測試小于1Ω的小電阻時可用單臂電橋,測試1Ω到1MΩ電阻時可用電橋或歐姆表(或萬用表),而測試1MΩ以上大電阻時應使用兆歐表。

    標簽: 電子 技能

    上傳時間: 2013-10-26

    上傳用戶:windwolf2000

  • 新型傳感器原理及應用pdf

    書籍名稱:新型傳感器技術及應用 作者:劉廣玉  陳明 出版社:北京航空航天大學出版社 書籍來源:網友推薦 文件格式:PDG 內容簡介:本書系綜合目前國內外有關文獻及作者的研究成果編著而成。主要內容有:傳感器敏感材料;微機械加工技術;傳感器建模;硅電容式集成傳感器;諧振式傳感器;聲表面波傳感器;薄膜傳感器;光纖傳感器;場效應管型化學傳感器;固態成象傳感器;Smart傳感器等十一章。從敏感材料、微機械加工技術到一些先進傳感器的設計原理、應用和發展情況作了較全面、深入的討論。 前言第一章 新型傳感器綜述第一節新型傳感效應第二節新型敏感材料第三節新加工工藝第二章 新型固態光電傳感器第一節普通光敏器件陣列第二節自掃描光電二極管陣列 SSPD第三節光電位置傳感器 PSD第四節輸液監測中的光電傳感器第三章 電荷耦合器件 CCD第一節CCD的物理基礎第二節CCD的工作原理第三節CCD器件第四節CCD在測量中的應用第四章 光纖傳感器第一節光纖傳感原理第二節常見光纖傳感器第三節光纖傳感器的應用第五章 集成傳感器第一節集成壓敏傳感器第二節集成溫敏傳感器第三節集成磁敏傳感器第四節集成傳感器應用實例第六章 化學傳感器第一節離子敏傳感器第二節氣敏傳感器第三節濕敏傳感器第四節工業廢水拜謝的自動監測第七章 機器人傳感器第一節機器人傳感器的功能與分類第二節機器人視覺傳感器第三節機器人觸覺傳感器第四節機器人接近覺傳感器第九章傳感器的信號處理第一節信號處理概述第二節傳感器的信號引出第三節信號補償電路第四節精密放大電路第十章新型傳感器在幾何量測量中的應用第一節光學透鏡心偏差的測量第二節超光滑表面微觀輪廓的測量第三節光學表面疵病度的測量附錄參考文獻

    標簽: 傳感器原理

    上傳時間: 2013-11-10

    上傳用戶:mickey008

  • 現代傳感器技術與應用

    現代傳感器技術與應用,本書共分為三編。第一編分為三章,重點介紹了傳感器技術的基礎知識,介紹了傳感器的基本概念、基本特性、數學模型以及傳感器的標定和選用規則,第二編分為七章,重點介紹了常見傳感器的基本原理、特性、測量電路以及應用;第三編分為十一章,重點介紹了新型傳感器的工作原理、特性以及應用。在每一章后給出了思考題和練習題,在部分章節中給出了例題分析。.本書的內容整體上以信號與信息處理為主線,由淺人深,以傳感器的基本概念和工作原理為基礎,突出各類傳感器的應用,便于讀者理解和掌握。..本書可以作為理工科高等院校的教材和教學參考書,也可供有關工程技術人員參考. 第一編 傳感器技術總診第1章 傳感器概論第2章 傳感器的基本特性第3章 傳感器的選用與標定第二編 常見傳感器原理及應用第4章 電容式傳感器第5章 壓電式傳感器第6章 電阻應變式傳感器第7章 光電式傳感器第8章 熱電式傳感器第9章 電感式傳感器第10章 磁電式傳感器第三編 新型傳感器原理及應用第11章 光導纖維與光纖傳感器第12章 氣敏傳感器第13章 濕敏傳感器第14章 仿生傳感器第15章 超聲波與超聲傳感器第16章 紅外輻射與紅外探測器第17章 微波傳感器第18章 射線式傳感器第19章 生物傳感器第20章 超導傳感器第21章 智能傳感器參考文獻

    標簽: 現代傳感器

    上傳時間: 2013-11-15

    上傳用戶:rnsfing

  • 傳感器網絡示例源程序

    傳感器網絡示例源程序使用說明書前言:本說明書主要介紹的是如何在電腦上使用串口調試助手軟件來實現對網關、路由和終端三種設備組網并讀取短地址,以及通過串口助手發送指令來實現控制節點的指示燈狀態(開關),讀取節點光敏值等內容一、程序的使用(必需先安裝‘ft232usbdriver2.0’驅動)安裝網關與計算機連接的USB 轉串口驅動, 驅動位于“ \ 軟件\ ” 目錄下“ft232usbdriver2.0”。(當我們把仿真器或者網關連接上電腦以后,硬件會自動提示您安裝驅動, 這時只要按安裝向導提示默認選擇就可以完成USB 轉串口的驅動安裝)二、下載程序1.C 盤新建目錄命名為“Texas Instruments”2.將‘傳感器網絡示例源程序’下的文件夾‘ZStack-1.4.2’復制到C 盤的‘TexasInstruments’文件夾內3、在C 盤的目錄下打開如下圖示的工程文件

    標簽: 傳感器網絡 源程序

    上傳時間: 2013-10-19

    上傳用戶:ANRAN

  • SDH光傳輸技術_徐少敏

    SDH[1](Synchronous Digital Hierarchy,同步數字體系)光端機容量較大,一般是16E1到4032E1。SDH是一種將復接、線路傳輸及交換功能融為一體、并由統一網管系統操作的綜合信息傳送網絡,是美國貝爾通信技術研究所提出來的同步光網絡(SONET)。

    標簽: SDH 傳輸技術

    上傳時間: 2013-11-07

    上傳用戶:3到15

主站蜘蛛池模板: 衡山县| 雅安市| 车险| 平远县| 广南县| 吉安市| 侯马市| 肇庆市| 东莞市| 灵丘县| 平阳县| 舒兰市| 罗城| 措美县| 陆丰市| 晋中市| 新巴尔虎左旗| 和林格尔县| 剑阁县| 建阳市| 呼和浩特市| 积石山| 石景山区| 碌曲县| 木兰县| 清流县| 会东县| 从江县| 富源县| 区。| 栾川县| 犍为县| 巩义市| 宜章县| 武宁县| 郎溪县| 武安市| 茂名市| 浦城县| 武山县| 定南县|