現(xiàn)代社會,以計算機技術(shù)為核心的信息技術(shù)迅速發(fā)展,信息容量呈爆炸式的增長,人們獲得的信息的途徑也越來越多,這其中人類獲得的視覺信息很大部分是從各種各樣的電子顯示器件上獲得的,隨著微電子技術(shù)和材料工業(yè)的進步,圖像顯示技術(shù)飛速發(fā)展,出現(xiàn)了多種新型顯示器,其中一些在顯示品質(zhì)上已經(jīng)接近或者超過了傳統(tǒng)的陰極射線管顯示器(CRT),同時這些顯示器件滿足設備了小型化和低功耗的要求。 經(jīng)過二十多年的研究、競爭和發(fā)展,平板顯示器件尤其是液晶顯示器件(LCD)已經(jīng)脫穎而出大規(guī)模的進入市場,成為新世紀顯示器件的主流。其中TFT-LCD是目前唯一在亮度、對比度、功耗、壽命、體積和重量等綜合性能上全面趕上和超過CRT的平板顯示顯示器件。它的性能優(yōu)良、大規(guī)模生產(chǎn)特性好,自動化程度高,原材料成本低廉,發(fā)展空間廣闊,迅速成為新世紀的主流產(chǎn)品,是21世紀全球經(jīng)濟增長的一個亮點。 本論文在深入理解了LCD顯示機理,尤其是TFT-LCD的顯示驅(qū)動原理的基礎上,利用緯視晶公司提供的TFT液晶模塊,以嵌入式目前比較常用的FPGA系列芯片中的EP1C6Q240C6為核心設計制作出了由單片機(MCU)+可編程邏輯器件(FPGA-FieldProgrammableGateArray)+SRAM的液晶顯示控制系統(tǒng)。文章闡述了該控制系統(tǒng)從硬件選型,到系統(tǒng)模塊硬件電路設計以及系統(tǒng)軟件設計的整個過程。該控制系統(tǒng)的功能模塊主要包括:電源模塊、可編程邏輯器件模塊、微處理器模塊、靜態(tài)RAM模塊以及觸摸屏控制模塊。其中微控制器模塊采用C語言編程,實現(xiàn)對液晶屏得數(shù)據(jù)傳以及其它控制功能,可編程邏輯器件(FPGA)模塊采用VHDL語言編程,實現(xiàn)對屏的時序控制,最終實現(xiàn)對液晶屏圖像顯示的控制。最后通過對使用該控制板點亮的液晶屏進行光學測試驗證了這種設計方案的可靠型和穩(wěn)定性。 本設計具有較大的實用價值,可為以后液晶屏控制系統(tǒng)的研制提供參考。
標簽: 液晶 顯示器控制 系統(tǒng)研究
上傳時間: 2013-07-22
上傳用戶:s藍莓汁
近些年來,隨著電力電子技術(shù)的發(fā)展,電力電子系統(tǒng)集成受到越來越多的關(guān)注,其中標準化模塊的串并聯(lián)技術(shù)成為研究熱點之一。輸入并聯(lián)輸出串聯(lián)型(Input-Parallel and Output-Series,IPOS)組合變換器適用于大功率高輸出電壓的場合。 要保證IPOS組合變換器正常工作,必須保證其各模塊的輸出電壓均衡。本文首先揭示了IPOS組合變換器中每個模塊輸入電流均分和輸出電壓均分之間的關(guān)系,在此基礎上提出一種輸出均壓控制方案,該方案對系統(tǒng)輸出電壓調(diào)節(jié)沒有影響。選擇移相控制全橋(Full-Bridge,F(xiàn)B)變換器作為基本模塊,對n個全橋模塊組成的IPOS組合變換器建立小信號數(shù)學模型,推導出采用輸出均壓控制方案的IPOS-FB系統(tǒng)的數(shù)學模型,該模型證明各模塊輸出均壓閉環(huán)不影響系統(tǒng)輸出電壓閉環(huán)的調(diào)節(jié),給出了模塊輸出均壓閉環(huán)和系統(tǒng)輸出電壓閉環(huán)的補償網(wǎng)絡參數(shù)設計。對于IPOS組合變換器,采用交錯控制,由于電流紋波抵消效應,輸入濾波電容容量可大大減小;由于電壓紋波抵消作用,在相同的系統(tǒng)輸出電壓紋波下,各模塊的輸出濾波電容可大大減小,由此可以提高變換器的功率密度。 根據(jù)所提出的輸出均壓控制策略,在實驗室研制了一臺由兩個1kW全橋模塊組成的IPOS-FB原理樣機,每個模塊輸入電壓為270V,輸出電壓為180V。并進行了仿真和實驗驗證,結(jié)果均表明本控制方案是正確有效的。
上傳時間: 2013-06-17
上傳用戶:cwyd0822
本文主要研究變速風力發(fā)電系統(tǒng)最大功率點的跟蹤問題,以使風力機在處于額定風速以下時能夠?qū)崿F(xiàn)最大風能捕獲。風力發(fā)電系統(tǒng)所采用的功率變流器和最大功率點的跟蹤控制策略提供了基本的研究平臺,以完成本課題的研究。 為了將風能輸送給電網(wǎng),變速風力機要有變流器將發(fā)電機發(fā)出的電壓和頻率都不斷改變的電能轉(zhuǎn)換成恒頻恒壓的電能,再傳輸給電網(wǎng)。本文采用了變速風力機,永磁發(fā)電機,三相AC-DC-DC-AC變流器,變壓器等構(gòu)建了變速風力發(fā)電系統(tǒng)。AC-DC-DC-AC變流器用于將永磁發(fā)電機發(fā)出的電壓和頻率都不斷改變的電能傳輸給電網(wǎng)。鑒于DC-DC直流環(huán)節(jié)在能量傳輸中的重要性,本文專門研究了單重Sepic變換器和雙重Sepic變換器在變速風力發(fā)電系統(tǒng)中所起的作用。 一個先進的變速風力發(fā)電系統(tǒng)的最大功率點跟蹤控制策略要對所控制的風力機起到良好的控制效果,不僅與風電系統(tǒng)所采用的變流器的拓撲結(jié)構(gòu)有關(guān),也與自身的控制方式有關(guān)。本文在對常用的幾種最大功率點的跟蹤控制策略分析研究的基礎上提出了以風力機的輸出功率和系統(tǒng)儲能的變化率以及風力機轉(zhuǎn)速等相關(guān)數(shù)據(jù)來確定風力機的實際工作點的最大功率點跟蹤控制策略,該策略的實施不依賴于風力機自身的特性,不需要測量風速等。 由于對變速風力機的建模和仿真是理解和驗證風力發(fā)電系統(tǒng)特性和最大功率點跟蹤控制策略的可行性的重要手段。因此本文在Matlab軟件的Simulink環(huán)境下對所研究的變速風力發(fā)電系統(tǒng)作了建模和仿真。仿真結(jié)果充分證明了本文所提出的變速風力發(fā)電系統(tǒng)最大功率點跟蹤控制策略的正確性和可行性。
上傳時間: 2013-04-24
上傳用戶:Wwill
在實際應用中,對永磁同步電機控制精度的要求越來越高。尤其是在機器人、航空航天、精密電子儀器等對電機性能要求較高的領(lǐng)域,系統(tǒng)的快速性、穩(wěn)定性和魯棒性能好壞成為決定永磁同步電機性能優(yōu)劣的重要指標。傳統(tǒng)電機系統(tǒng)通常采用PID控制,其本質(zhì)上是一種線性控制,若被控對象具有非線性特性或有參變量發(fā)生變化,會使得線性常參數(shù)的PID控制器無法保持設計時的性能指標;在確定PID參數(shù)的過程中,參數(shù)整定值是具有一定局域性的優(yōu)化值,并不是全局最優(yōu)值。實際電機系統(tǒng)具有非線性、參數(shù)時變及建模過程復雜等特點,因此常規(guī)PID控制難以從根本上解決動態(tài)品質(zhì)與穩(wěn)態(tài)精度的矛盾。永磁同步電機是典型的多變量、參數(shù)時變的非線性控制對象。先進控制方法(諸如智能控制、優(yōu)化算法等)研究應用的發(fā)展與深入,為控制復雜的永磁同步電機系統(tǒng)開辟了嶄新的途徑。由于先進控制方法擺脫了對控制對象模型的依賴,能夠在處理不精確性和不確定性問題中有可處理性、魯棒性,因而將其引入永磁同步電機控制已成為一個必然的趨勢。本文根據(jù)系統(tǒng)實現(xiàn)目標的不同,選取相應的先進控制方法,并與PID控制相結(jié)合,對永磁同步電機各方面性能進行有針對性的優(yōu)化,最終使其控制精度得到顯著的提高。為達到對永磁同步電機進行性能優(yōu)化的研究目的,文中首先探討了正弦波永磁同步電機和方波永磁同步電機的運行特點及控制機理,通過建立數(shù)學模型,對相應的控制系統(tǒng)進行了整體分析。針對永磁同步電機非線性、強耦合的特點,設計了矢量控制方式下的永磁同步電機閉環(huán)反饋控制系統(tǒng)。結(jié)合常規(guī)PID控制,將模糊控制、遺傳算法、神經(jīng)網(wǎng)絡和人工免疫等多種先進控制方法應用于永磁同步電機調(diào)速系統(tǒng)、伺服系統(tǒng)和同步傳動系統(tǒng)的控制器設計中,以滿足不同控制系統(tǒng)對電機動、靜態(tài)性能的要求以及對調(diào)速性能或跟隨性能的側(cè)重。實驗結(jié)果表明,采用先進控制方法的永磁同步電機具有較好的動態(tài)性能、抗擾動能力以及較強的魯棒性能;與傳統(tǒng)PID控制相比,系統(tǒng)的控制精度得到了明顯提高。研究結(jié)果驗證了先進控制方法應用于永磁同步電機性能優(yōu)化的有效性和實用性。
上傳時間: 2013-04-24
上傳用戶:shinesyh
永磁同步電機(PMSM)因其無需勵磁電流、運行效率和功率密度高,在交流調(diào)速系統(tǒng)中被廣泛的應用,但PMSM高性能的矢量控制需要精確的轉(zhuǎn)子位置和速度信號來實現(xiàn)磁場定向。在傳統(tǒng)控制中,一般采用機械式傳感器來檢測轉(zhuǎn)子位置和轉(zhuǎn)速,但是機械式傳感器存在諸如成本高、可靠性低、不易維護等問題,使得無速度/位置傳感器控制技術(shù)成為永磁同步電機控制中的熱點問題。雖然目前已有較多的研究成果,但是所采用的方法大多是基于電機基波方程的分析,一般不適用于低速甚至零速,并且對電機參數(shù)較為敏感,魯棒性差。本文正是為了解決這個問題,而采用高頻信號注入法實現(xiàn)轉(zhuǎn)子位置估算,這種方法適合于低速甚至零速,對電機參數(shù)的變化不敏感,魯棒性強。主要做了如下的工作: 首先詳細介紹了永磁同步電機三種基本結(jié)構(gòu),在建立了旋轉(zhuǎn)坐標系下永磁同步電機數(shù)學模型的基礎上敘述了其矢量控制原理,分析了各種現(xiàn)有的永磁同步電機無速度/位置傳感器控制策略;其次在永磁同步電機矢量控制的基礎上詳細討論了旋轉(zhuǎn)高頻電壓信號注入法與脈振高頻電壓信號注入法提取轉(zhuǎn)子位置的基本原理,并在此基礎上利用MATLAB/SIMULINK仿真工具建立了整個永磁同步電機無速度/位置傳感器矢量控制系統(tǒng)的模型,進行了仿真研究,仿真結(jié)果驗證了控制算法的正確性。最后利用TI公司推出的數(shù)字信號處理器DSP芯片TMS320F2812,實現(xiàn)了基于脈振高頻信號注入法的永磁同步電機無速度/位置傳感器的實驗運行,實驗結(jié)果驗證了這種方法適合于低速運行,對電機參數(shù)的變化不敏感,魯棒性強。
上傳時間: 2013-06-06
上傳用戶:Neal917
太陽能作為一種新型能源以其清潔、儲量大、無污染等優(yōu)點使其利用越來越受到人們的重視,而光伏發(fā)電技術(shù)的應用更是人們普遍關(guān)注的焦點。本文主要研究了光伏并網(wǎng)發(fā)電系統(tǒng)的控制方法。由于目前光伏電池的價格高,轉(zhuǎn)換效率比較低,為了降低系統(tǒng)造價和有效的利用太陽能,對光伏并網(wǎng)系統(tǒng)的控制方法的研究顯得尤為重要。 本文針對光伏并網(wǎng)發(fā)電系統(tǒng)的特點,將其分為三部分進行研究。研究了光伏電池的工作原理及輸出特性,在此基礎上建立了其仿真模型。利用PSIM仿真軟件對不同環(huán)境及不同日照強度下的太陽能電池輸出特性進行了仿真。仿真與實測數(shù)據(jù)的對比驗證了其仿真模型的正確性,為后續(xù)的仿真奠定基礎。 光伏板的最大功率點的控制是實現(xiàn)光伏并網(wǎng)高效率的輸出的必要條件。采用基于模糊控制的方法求取最大功率點驅(qū)動boost升壓變換器,用以實現(xiàn)最大功率點跟蹤和控制。針對電導增量法和干擾法的不足,研究了基于模糊控制的方法。從仿真及實驗的結(jié)果均能看出系統(tǒng)的穩(wěn)態(tài)功率損耗大大縮小,提高了其穩(wěn)態(tài)性能。 闡述了并網(wǎng)逆變器的工作原理和控制策略。基于逆變控制方法的研究,對系統(tǒng)進行了仿真與實驗。其中控制方法采用電流滯環(huán)跟蹤控制。從仿真及實驗結(jié)果中可以看出實現(xiàn)了輸出功率因數(shù)為1的控制目標。 開發(fā)了光伏并網(wǎng)的實驗系統(tǒng),設計了基于DSP的最大功率點控制系統(tǒng)和逆變并網(wǎng)系統(tǒng)。實驗結(jié)果表明,本文采用的控制策略和設計方法是可行有效的,主電路和控制電路的設計是合理的。
標簽: 光伏并網(wǎng)發(fā)電 系統(tǒng)控制 法的研究
上傳時間: 2013-07-28
上傳用戶:yepeng139
隨著家用空調(diào)的普及應用,空調(diào)已日漸成為耗能大戶。我國經(jīng)濟建設多年來高速發(fā)展,正面臨能源日益緊張的問題,由于空調(diào)節(jié)能尚有空間,因此人們普遍關(guān)注空調(diào)節(jié)能技術(shù)。在家用空調(diào)的各種節(jié)能技術(shù)中,直流壓縮機變頻驅(qū)動是發(fā)展的主流方向。從驅(qū)動方式上看,直流壓縮機可以采用方波控制或矢量控制。與方波控制相比,矢量控制的空調(diào)直流壓縮機具有噪聲低、振動小、效率高等特點,更加符合節(jié)能和環(huán)保的發(fā)展方向。 本文主要研究了適用于空調(diào)壓縮機負載的無轉(zhuǎn)子位置傳感器永磁同步電機矢量控制方法。首先從電機的基本方程入手,詳細推導了永磁同步電機矢量控制的數(shù)學模型。詳細分析了各種電流控制策略特點,提出了采用適合直流壓縮機驅(qū)動的MTPA控制方式。 其次提出了具有凸極效應的壓縮機永磁同步電機的一種簡化模型,得到了適用于IPMSM的滑模觀測器,解決了IPMSM在αβ坐標系中應用滑模觀測器困難的問題。針對壓縮機運行特點,采用全維狀態(tài)觀測器方法,實現(xiàn)IPMSM反電動勢的觀測,根據(jù)反電動勢計算出電機轉(zhuǎn)子位置和轉(zhuǎn)速,實現(xiàn)了無傳感器矢量控制。本文詳細分析了全維狀態(tài)觀測器的極點配置方法,通過將四個極點配置在相同位置,簡輕了計算量,也便于實現(xiàn)。 第三,由于反電動勢估算法在電機低轉(zhuǎn)速下不能正確估算轉(zhuǎn)子位置,無法正常閉環(huán)起動,本文提出了一種簡單的用于直流壓縮機的起動方法,實現(xiàn)了壓縮機的可靠起動。同時在深入分析電機等效模型的基礎上,給出了一種簡單的電機參數(shù)測量方法,通過簡單測量和計算,得到系統(tǒng)實現(xiàn)無傳感器永磁同步電機矢量控制所需的電感、電阻及反電動勢系數(shù)等關(guān)鍵參數(shù)。 最后通過MATLAB/Simulimk7.1仿真軟件對基于滑模觀測器和基于全維觀測器的永磁同步電機矢量控制方法進行了仿真驗證,設計了以TMS320F2403數(shù)字信號處理器為控制核心的直流壓縮機矢量控制實驗平臺,并進行了大量的實驗驗證。仿真及實驗結(jié)果證明了本文理論分析和所提方法的正確性,并已應用于實際的直流壓縮機矢量控制系統(tǒng)。
標簽: 空調(diào)壓縮機 無傳感器 方法研究
上傳時間: 2013-06-13
上傳用戶:xuanchangri
pid控制原理及編程方法,詳細的參數(shù)說明和例程
上傳時間: 2013-04-24
上傳用戶:wangyi39
各類交流電源在產(chǎn)品開發(fā)過程中都需要進行長時間的帶載測試,以檢驗其電氣性能。傳統(tǒng)使用電阻、電感和電容這類無源元件作為負載的測試方法存在參數(shù)調(diào)節(jié)不方便、發(fā)熱量大、耗能等諸多缺點。為克服傳統(tǒng)測試方法的不足,本文研究了一種帶能量回饋功能的交流電子負載裝置,采用交直交變換結(jié)構(gòu),由具有公共直流母線的兩級電壓型PWM整流器組成。通過控制前級PWM整流器的輸入功率因數(shù),在其輸入端模擬不同阻抗特性的負載;后級PWM整流器工作在并網(wǎng)逆變狀態(tài),將被測試電源發(fā)出的電能回饋至電網(wǎng)進行循環(huán)利用。 交流電子負載屬于一種測試設備,需要實現(xiàn)用戶交互、通訊、監(jiān)控等功能,因此采用了以DSP芯片為核心的數(shù)字控制方案。本文首先探討了數(shù)字控制技術(shù)對變換器性能的影響,重點討論了當數(shù)字脈寬調(diào)制器精度不足時會引起輸出產(chǎn)生極限環(huán)振蕩的問題。分析了極限環(huán)振蕩產(chǎn)生的原因,并以BUCK、BOOST和BUCK-BOOST三種基本變換器的數(shù)字控制器設計為例,推導出了為避免極限環(huán)振蕩,數(shù)字脈寬調(diào)制器應滿足的最小精度要求。在MATLAB中建立了數(shù)字控制器的仿真模型,設計了一臺數(shù)字控制BUCK變換器實驗樣機,仿真和實驗結(jié)果驗證了理論分析的正確性。 根據(jù)處理電能方式的不同,交流電子負載可分為能量消耗型和能量回饋型兩大類。本文首先針對交流電源產(chǎn)品的功能性測試應用場合,提出了一種新的能量消耗型交流電子負載結(jié)構(gòu)和相應的控制方法。然后重點介紹了能量回饋型交流電子負載的工作原理及其控制策略。分析了功率電路中主要元件參數(shù)的選取方法。其中,對工作在任意功率因數(shù)情況下的單相PWM整流器中交流濾波電感的取值作了重點討論。在Saber軟件中建立了系統(tǒng)的仿真模型,設計了一臺以TMS320F2812 DSP芯片為控制核心的能量回饋型交流電子負載原理樣機,仿真和實驗結(jié)果驗證了系統(tǒng)方案的可行性和正確性。最后針對交流電子負載的并網(wǎng)能量回饋功能,初步分析了一種基于正反饋思想的并網(wǎng)系統(tǒng)孤島檢測方法,并進行了仿真驗證。
上傳時間: 2013-07-29
上傳用戶:zlf19911217
移動機器人是機器人研究領(lǐng)域中重要的一個分支,智能移動機器人集人工智能、智能控制、信息處理、圖象處理、檢測與轉(zhuǎn)換等專業(yè)技術(shù)為一體,跨計算’機、自動控制、機械、電子等多學科,成為當前智能機器人研究的重點之一。路徑規(guī)劃是移動機器人研究的一個基本而又極其重要的課題。靈活有效的路徑規(guī)劃算法能夠幫助機器人適應各種復雜的環(huán)境,大大提高機器人的應用領(lǐng)域,尤其是使移動機器人具備自動識別環(huán)境的能力,能在未知環(huán)境下完成一定的工作。 本文的主要任務是以LEGO Technic組件為本體,重新設計一個控制器,并據(jù)此研究移動機器人的避障和路徑規(guī)劃策略。為滿足移動機器人避障的實時性、準確性要求,需要有一個功能完善的硬件平臺,實現(xiàn)信息采集、處理以及避障的策略。本文設計了一套移動機器人控制器,該控制器以DSP TMS320F2407A為核心,輔之以相應的外圍電路、傳感器、人機交互、串行通信和電源等模塊。車體動力學實驗及避障實驗結(jié)果驗證了本文所設計的控制器的性能。 在對移動機器人的避障策略的研究過程中,采用了基于虛擬力場法的位置閉環(huán)控制方法,這種方法簡化了傳統(tǒng)避障方法的數(shù)學運算過程,提高了機器人對障礙物的反應速度。最后,設計了一套實驗系統(tǒng),進行相應的避障方法實驗。結(jié)果表明,所設計的控制器能夠完成基本的實時避障功能。
標簽: DSP 移動機器人 控制系統(tǒng)設計
上傳時間: 2013-06-30
上傳用戶:gdgzhym
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1