TCA2003是徠卡測量系統于1998年推出市場的世界上第一臺帶有目標自動照準功能(Automatic Target Recognition)的全自動全站儀,又被稱作“測量機器人”,其代表世界大地測量儀器領先水平的0.5"測角精度和1mm+1×10-6Dm測距精度使其成為世界各國高精度大地測量應用中的一款經典儀器。 從1999年進入中國市場開始,TCA2003先后在大型水電站和水利樞紐大壩監測、地鐵隧道和基坑、核電站和大型鍋爐等工業現場高精度測量及自動化監測項目中投入使用,并收到良好的工程應用效果,尤其是其對各種惡劣環境的抵御能力和測量性能穩定性,更是得到眾多用戶的贊許。記得從頭至尾負責廣州地鐵黃沙站自動化監測項目實施的廣州亞奧公司的張總曾如此激動的評價TCA2003的穩定性和耐用性,“我們在廣州地鐵黃沙站使用的6臺TCA2003使用4年多時間性能一直都很穩定,精度保證在指標中”。此后TCA2003在浦東磁懸浮、盧浦大橋、青藏鐵路、武廣高速鐵路、國家大劇院、“鳥巢”、廣州電視臺發射塔等一批國家重大工程和特殊建筑物建設項目的高精度工程測量都有所應用。目前已經形成在礦山監測、地質災害和工程搶險監測等新興自動化測量應用領域、原有各種高精度自動化測量和工程測量應用領域百花競放的態勢。 十年的市場檢驗,我們足以對一個測量儀器的品質和性能作出可靠的評價。出版此文集一方面是總結用戶的應用經驗,另一方面也希望能給徠卡TCA2003用戶提供參考借鑒。
上傳時間: 2013-11-03
上傳用戶:shizhanincc
模糊算法的一個小函數,計算量小,簡單易用,缺點是適應性不夠強,不能滿足高精度的需要
上傳時間: 2014-01-19
上傳用戶:redmoons
一些算法的實現,用的是pascal,包括數論、圖論、高精度計算、排序算法、背包問題等。
標簽: 算法
上傳時間: 2014-01-26
上傳用戶:aa54
全局測量與精度控制是超大空間內精密測量的基礎,決定著整體測量的性能和適用性。為提高整體空間測量精度,同時解決定向及尺度問題,必須在全局空間內布設高精度測量控制網。三維坐標測量作為幾何量測量的重要代表,是建立控制網最直接且約束最強的控制條件。為建立大空間精密三維坐標控制網,采用激光跟蹤儀多站位對空間全局控制點進行三維坐標測量,結合奇異值分解算法完成各站位的方位定向,并利用激光跟蹤儀極高精度的測距值作為約束,對跟蹤儀測角誤差進行優化,進一步提高坐標控制網的精度。將該控制網建立方法應用于某飛機機翼表面形貌測量,實現激光跟蹤儀全局控制與終端攝影測量的高效組合,以不同若干站位下全局控制點間距離比對結果表明該控制網對現場測量精度和可靠性的提高具有良好效果 。
上傳時間: 2017-03-23
上傳用戶:wyf1995
隨著經濟發展,步進電機在工業生產與社會生活中的應用越來越廣泛,對精度的要求也在不斷提高。日益擴展的實際應用需求,不僅對步進電機結構提出了更高的要求,而且對步進電機的驅動控制也提出了更高的要求。雖然步進電機存在很多的優點,但是實際應用起來也有許多的不方便,很大程度上是受到步進電機驅動器的限制。步進電機的應用必須選用與之匹配的步進電機驅動器,以滿足電機對不同電流大小的要求。而且現在的很多控制器不夠智能化,實際應用中,除了要選用專門的驅動器之外,還要配備一個控制器,來發送一些脈沖,或者調節一些步進電機的運行參數。大多數驅動器都無法滿足高精度高效控制的需求,這些驅動器沒能更好的開發出步進電機的細分等方面的潛能。由上述可知,目前常用驅動器缺乏普適性,電流大小無法滿足不同類型電機的要求,細分分辨率不高,斬波頻率不可調,保護功能不足,智能化程度不高。 針對步進電機存在的上述問題,本課題設計了性能較為優越的步進電機驅動系統。該驅動器采用了恒流驅動與細分驅動的原理,結合單片機與電力電子應用技術,來提高驅動器的性能。該步進電機驅動系統,硬件上包括STM32與LV8726專用芯片組成的控制電路、功率放大電路、光耦隔離電路以及USB轉串口的通信電路。軟件上使用VB6.0編寫了驅動器的控制應用程序,通過上位機實時控制步進電機的運行狀態,以提高智能化的程度。 對整個系統的測試表明,電機的實際輸出波形與理論輸出波形接近。優化的加速曲線的設計,使得電機在高速啟動的時候,不會出現失步或者堵轉的情況。通過上位機的界面,可以實時控制步進電機在各種參數下運行,并實時地切換運行狀態,運行參數主要包括步進電機的速度,加速度,步距角細分,繞組電流,正反轉,啟動和停止,電流衰減率,上下橋臂切換的死區時間等參數。驅動器除具備以上功能之外,還具備多種保護功能,如欠壓保護,過流保護,過溫報警等功能。該驅動器能夠驅動多種不同類型的步進電機,具有更高的輸出電流,電流無極可調,具有更高的細分分辨率。能夠滿足多場合下,高精度高效的應用需求。
上傳時間: 2022-05-29
上傳用戶:qdxqdxqdxqdx
摘要:商用無人機云臺是立足于無人機高空操控優勢,通過無線遙控來進行航空攝影、系統立體測繪地面圖像或者準確操控附帶設備的驅動裝置,主要功能是利用高精度電機控制,實現攝像設備對X,Y,2三維空間的精準角度控制,以達到精確控制設備操作角度的效果。云臺系統的控制精度對這個無人機的攝像性能及操控效果有著至關重要的作用。目前在云臺控制算法上比較先進的控制算法都本掌握在國內領先的幾家廠家手上,大部分云臺設計都沿用了傳統的直流有刷電機的控制或者120°BLDC控制,在防抖效果及控制精度上都有需要改進的地方,通過對產品的分析將FOC算法融入云臺控制,將有助于達到提升防抖效果及控制精度的效果,尤其是將磁編碼器替換傳統的電位器設計,可以在控制精度,提高使用壽命,降低噪聲,減少生產難度等方便帶來極大優勢。關鍵字:無人機云臺PISMFOC控制算法磁編碼器正文:引言:云臺控制的核心主要分為兩大部分:電機控制和角度控制,電機控制的關鍵包括MCU編程及功率器件的控制,角度控制則包括編碼器的結構安裝設計及控制等。將FOC控制及磁編應用穩定運用到無人機云臺控制系統中,有助于提高電機控制精度,減低系統噪聲,降低功耗,減少飛行控制主系統的運算開銷,提高產品工作壽命等作用,從而提升無人機整體性能。
上傳時間: 2022-06-30
上傳用戶:
本課題是國家自然科學基金重點資助項目“微型燃氣輪機一高速發電機分布式發電與能量轉換系統研究”(50437010)的部分研究內容。高速電機的體積小、功率密度大和效率高,正在成為電機領域的研究熱點之一。高速電機的主要特點有兩個:一是轉子的高速旋轉,二是定子繞組電流和鐵心中磁通的高頻率,由此決定了不同于普通電機的高速電機特有的關鍵技術。本文針對高速永磁電機的機械與電磁特性及其關鍵技術進行了深入地研究,主要包括以下內容: 首先,進行了高速永磁電機轉子的結構設計與強度分析。根據永磁體抗壓強度遠大于抗拉強度的特點,提出了一種采用整體永磁體外加非導磁高強度合金鋼護套的新型轉子結構。永磁體與護套之間采用過盈配合,用護套對永磁體施加的靜態預壓力抵消高速旋轉離心力產生的拉應力,使永磁體高速旋轉時仍承受一定的壓應力,從而保證永磁轉子的安全運行。基于彈性力學厚壁筒理論與有限元接觸理論,建立了新型高速永磁轉子應力計算模型,確定了護套和永磁體之間的過盈量,計算了永磁體和護套中的應力分布。該種轉子結構和強度計算方法已應用于高速永磁電機的樣機設計。 其次,進行了高速永磁轉子的剛度分析和磁力軸承—轉子系統的臨界轉速計算。基于電磁場理論分析了磁力軸承支承的各向同性,利用氣隙靜態偏置磁通密度計算了磁力軸承的線性支承剛度,在對高速電機轉子結構離散化的基礎上建立了磁力軸承—轉子系統的動力學方程,采用有限元法計算了高速永磁電機轉子的臨界轉速。利用該計算方法設計的1臺采用磁力軸承的高速電機,已成功實現60000r/min的運行。 再次,進行了高速永磁電機的定子設計,提出了一種新型環形繞組結構。環型繞組線圈的下層邊放在定子鐵心的6個槽中,而上層邊分布在定子鐵心軛部外緣的24個槽中,不但增加了定子表面的通風散熱面積,使冷卻氣流直接冷卻定子繞組,更為重要的是,解決了傳統2極電機繞組端部軸向過長的難題,使轉子軸向長度大為縮短,從而增加了高速永磁電機轉子系統的剛度。 然后,采用場路耦合以及解析與實驗相結合的方法,分析計算了高速永磁電機的損耗和溫升,并對高速永磁發電機的電磁特性進行了仿真。高速電機的優點是體積小和功率密度大,然而隨之而來的缺點是單位體積的損耗大,以及因散熱面積小造成的散熱困難。損耗和溫升的準確計算對高速電機的安全運行至關重要。為了準確計算高速電機的高頻鐵耗,對定子鐵心所采用的各向異性冷軋電工鋼片制作的試件,進行了不同頻率和不同軋制方向的導磁性能和損耗系數測定。然后采用場路耦合的方法,分析計算了高速電機的定子鐵耗和銅耗、轉子護套和永磁體內的高頻附加損耗以及轉子表面的風磨損耗。在損耗分析的基礎上,計算了高速電機的溫升。最后,設計制造了一臺額定轉速為60000r/min的高速永磁電機試驗樣機,并進行了初步的試驗研究。測量了電機在不同轉速下空載運行時的定、轉子溫升及定子繞組的反電動勢波形。通過與仿真結果的對比,部分驗證了高速永磁電機理論分析和設計方法的正確性。在此基礎上,提出一種高速永磁電機的改進設計方案,為進一步的研究工作打下了基礎。
上傳時間: 2013-04-24
上傳用戶:woshiayin
數字電視近年來飛速發展,它最終取代模擬電視是一個必然趨勢。可編程邏輯技術以及EDA技術的升溫也帶來了電子系統設計的巨大變革。本論文將迅速發展的FPGA技術應用于數字電視系統中,研究探討了數字電視前端系統中的關鍵設備——傳輸流復用器的FPGA建模和實現,以及相關的關鍵技術。本論文首先介紹了數字電視的發展現狀和前景,概述了數字電視前端系統的組成結構與關鍵技術,以及可編程邏輯技術的發展和優勢。然后介紹了數字電視系統中的重要標準MPEG-2以及傳輸流復用器的原理和系統結構,并且從理論上闡述了復用器設計的關鍵技術:PSI重組和PCR調整。接著詳細說明了如何運用創新思路,采用獨特的硬件架構在一片FPGA上實現整個復用器的軟件和硬件系統的方案,并且舉例說明了復用器硬件邏輯設計中所運用的幾個FPGA設計技巧。最后對本文進行總結,并提出了數字電視系統中復用器設備未來發展的設想。本文中介紹的基于SOPC的硬件復用器設計方案,將系統的軟件和硬件集成在一款Altera公司新推出的低成本高密度cyclone系列FPGA上,并且將FPGA設計技巧運用于復用器的硬件邏輯設計中。整個設計方案不但簡化了系統設計,而且實現了穩定,高速,低成本,可擴展性強的復用器系統。
上傳時間: 2013-06-02
上傳用戶:gtzj
本論文利用FPGA可編程邏輯器件和硬件描述語言Verilog,采用自頂向下的設計方法,開發了一款基于PCI總線的高速數據采集卡。本數據采集系統中,采用PLX公司生產的PLX9080作為PCI總線接口芯片。用4片每片容量為8MB的SDRAM作為數據采集的前端和PCI總線的數據緩沖。用ALTERA公司生產的Cyclone系列FPGA實現PCI接口芯片PLX9080的時序邏輯、對數據采集通道的前端控制以及對SDRAM的讀寫控制。 在本論文將重點放在了用硬件描述語言Verilog進行FPGA硬件邏輯編程上。本論文按照自頂向下的設計方法,詳細論述了PCI接口轉化電路模塊、SDRAM存儲片子讀寫控制電路模塊、FPGA內部寄存器讀寫控制電路模塊以及用于RF端的自動增益控制電路AGC模塊的設計。
上傳時間: 2013-04-24
上傳用戶:yhm_all
摘要: 介紹了時鐘分相技術并討論了時鐘分相技術在高速數字電路設計中的作用。 關鍵詞: 時鐘分相技術; 應用 中圖分類號: TN 79 文獻標識碼:A 文章編號: 025820934 (2000) 0620437203 時鐘是高速數字電路設計的關鍵技術之一, 系統時鐘的性能好壞, 直接影響了整個電路的 性能。尤其現代電子系統對性能的越來越高的要求, 迫使我們集中更多的注意力在更高頻率、 更高精度的時鐘設計上面。但隨著系統時鐘頻率的升高。我們的系統設計將面臨一系列的問 題。 1) 時鐘的快速電平切換將給電路帶來的串擾(Crosstalk) 和其他的噪聲。 2) 高速的時鐘對電路板的設計提出了更高的要求: 我們應引入傳輸線(T ransm ission L ine) 模型, 并在信號的匹配上有更多的考慮。 3) 在系統時鐘高于100MHz 的情況下, 應使用高速芯片來達到所需的速度, 如ECL 芯 片, 但這種芯片一般功耗很大, 再加上匹配電阻增加的功耗, 使整個系統所需要的電流增大, 發 熱量增多, 對系統的穩定性和集成度有不利的影響。 4) 高頻時鐘相應的電磁輻射(EM I) 比較嚴重。 所以在高速數字系統設計中對高頻時鐘信號的處理應格外慎重, 盡量減少電路中高頻信 號的成分, 這里介紹一種很好的解決方法, 即利用時鐘分相技術, 以低頻的時鐘實現高頻的處 理。 1 時鐘分相技術 我們知道, 時鐘信號的一個周期按相位來分, 可以分為360°。所謂時鐘分相技術, 就是把 時鐘周期的多個相位都加以利用, 以達到更高的時間分辨。在通常的設計中, 我們只用到時鐘 的上升沿(0 相位) , 如果把時鐘的下降沿(180°相位) 也加以利用, 系統的時間分辨能力就可以 提高一倍(如圖1a 所示)。同理, 將時鐘分為4 個相位(0°、90°、180°和270°) , 系統的時間分辨就 可以提高為原來的4 倍(如圖1b 所示)。 以前也有人嘗試過用專門的延遲線或邏輯門延時來達到時鐘分相的目的。用這種方法產生的相位差不夠準確, 而且引起的時間偏移(Skew ) 和抖動 (J itters) 比較大, 無法實現高精度的時間分辨。 近年來半導體技術的發展, 使高質量的分相功能在一 片芯片內實現成為可能, 如AMCC 公司的S4405, CY2 PRESS 公司的CY9901 和CY9911, 都是性能優異的時鐘 芯片。這些芯片的出現, 大大促進了時鐘分相技術在實際電 路中的應用。我們在這方面作了一些嘗試性的工作: 要獲得 良好的時間性能, 必須確保分相時鐘的Skew 和J itters 都 比較小。因此在我們的設計中, 通常用一個低頻、高精度的 晶體作為時鐘源, 將這個低頻時鐘通過一個鎖相環(PLL ) , 獲得一個較高頻率的、比較純凈的時鐘, 對這個時鐘進行分相, 就可獲得高穩定、低抖動的分 相時鐘。 這部分電路在實際運用中獲得了很好的效果。下面以應用的實例加以說明。2 應用實例 2. 1 應用在接入網中 在通訊系統中, 由于要減少傳輸 上的硬件開銷, 一般以串行模式傳輸 圖3 時鐘分為4 個相位 數據, 與其同步的時鐘信號并不傳輸。 但本地接收到數據時, 為了準確地獲取 數據, 必須得到數據時鐘, 即要獲取與數 據同步的時鐘信號。在接入網中, 數據傳 輸的結構如圖2 所示。 數據以68MBös 的速率傳輸, 即每 個bit 占有14. 7ns 的寬度, 在每個數據 幀的開頭有一個用于同步檢測的頭部信息。我們要找到與它同步性好的時鐘信號, 一般時間 分辨應該達到1ö4 的時鐘周期。即14. 7ö 4≈ 3. 7ns, 這就是說, 系統時鐘頻率應在300MHz 以 上, 在這種頻率下, 我們必須使用ECL inp s 芯片(ECL inp s 是ECL 芯片系列中速度最快的, 其 典型門延遲為340p s) , 如前所述, 這樣對整個系統設計帶來很多的困擾。 我們在這里使用鎖相環和時鐘分相技術, 將一個16MHz 晶振作為時鐘源, 經過鎖相環 89429 升頻得到68MHz 的時鐘, 再經過分相芯片AMCCS4405 分成4 個相位, 如圖3 所示。 我們只要從4 個相位的68MHz 時鐘中選擇出與數據同步性最好的一個。選擇的依據是: 在每個數據幀的頭部(HEAD) 都有一個8bit 的KWD (KeyWord) (如圖1 所示) , 我們分別用 這4 個相位的時鐘去鎖存數據, 如果經某個時鐘鎖存后的數據在這個指定位置最先檢測出這 個KWD, 就認為下一相位的時鐘與數據的同步性最好(相關)。 根據這個判別原理, 我們設計了圖4 所示的時鐘分相選擇電路。 在板上通過鎖相環89429 和分相芯片S4405 獲得我們所要的68MHz 4 相時鐘: 用這4 個 時鐘分別將輸入數據進行移位, 將移位的數據與KWD 作比較, 若至少有7bit 符合, 則認為檢 出了KWD。將4 路相關器的結果經過優先判選控制邏輯, 即可輸出同步性最好的時鐘。這里, 我們運用AMCC 公司生產的 S4405 芯片, 對68MHz 的時鐘進行了4 分 相, 成功地實現了同步時鐘的獲取, 這部分 電路目前已實際地應用在某通訊系統的接 入網中。 2. 2 高速數據采集系統中的應用 高速、高精度的模擬- 數字變換 (ADC) 一直是高速數據采集系統的關鍵部 分。高速的ADC 價格昂貴, 而且系統設計 難度很高。以前就有人考慮使用多個低速 圖5 分相技術應用于采集系統 ADC 和時鐘分相, 用以替代高速的ADC, 但由 于時鐘分相電路產生的相位不準確, 時鐘的 J itters 和Skew 比較大(如前述) , 容易產生較 大的孔徑晃動(Aperture J itters) , 無法達到很 好的時間分辨。 現在使用時鐘分相芯片, 我們可以把分相 技術應用在高速數據采集系統中: 以4 分相后 圖6 分相技術提高系統的數據采集率 的80MHz 采樣時鐘分別作為ADC 的 轉換時鐘, 對模擬信號進行采樣, 如圖5 所示。 在每一采集通道中, 輸入信號經過 緩沖、調理, 送入ADC 進行模數轉換, 采集到的數據寫入存儲器(M EM )。各個 采集通道采集的是同一信號, 不過采樣 點依次相差90°相位。通過存儲器中的數 據重組, 可以使系統時鐘為80MHz 的采 集系統達到320MHz 數據采集率(如圖6 所示)。 3 總結 靈活地運用時鐘分相技術, 可以有效地用低頻時鐘實現相當于高頻時鐘的時間性能, 并 避免了高速數字電路設計中一些問題, 降低了系統設計的難度。
上傳時間: 2013-12-17
上傳用戶:xg262122