C8051Fxxx 系列單片機是完全集成的混合信號系統級芯片,具有與8051 兼容的微控制器內核,與MCS-51 指令集完全兼容。除了具有標準8052 的數字外設部件之外,片內還集成了數據采集和控制系統中常用的模擬部件和其它數字外設及功能部件。參見表1.1 的產品選擇指南可快速查看每個MCU 的特性。 MCU 中的外設或功能部件包括模擬多路選擇器、可編程增益放大器、ADC、DAC、電壓比較器、電壓基準、溫度傳感器、SMBus/ I2C、UART、SPI、可編程計數器/定時器陣列(PCA)、定時器、數字I/O 端口、電源監視器、看門狗定時器(WDT)和時鐘振蕩器等。所有器件都有內置的FLASH 程序存儲器和256 字節的內部RAM,有些器件內部還有位于外部數據存儲器空間的RAM,即XRAM。C8051Fxxx 單片機采用流水線結構,機器周期由標準的12 個系統時鐘周期降為1 個系統時鐘周期,處理能力大大提高,峰值性能可達25MIPS。C8051Fxxx 單片機是真正能獨立工作的片上系統(SOC)。每個MCU 都能有效地管理模擬和數字外設,可以關閉單個或全部外設以節省功耗。FLASH 存儲器還具有在系統重新編程能力,可用于非易失性數據存儲,并允許現場更新8051 固件。應用程序可以使用MOVC 和MOVX 指令對FLASH 進行讀或改寫,每次讀或寫一個字節。這一特性允許將程序存儲器用于非易失性數據存儲以及在軟件控制下更新程序代碼。片內JTAG 調試支持功能允許使用安裝在最終應用系統上的產品MCU 進行非侵入式(不占用片內資源)、全速、在系統調試。該調試系統支持觀察和修改存儲器和寄存器,支持斷點、單步、運行和停機命令。在使用JTAG 調試時,所有的模擬和數字外設都可全功能運行。每個MCU 都可在工業溫度范圍(-45℃到+85℃)內用2.7V-3.6V(F018/019 為2.8V-3.6V)的電壓工作。端口I/O、/RST 和JTAG 引腳都容許5V 的輸入信號電壓。
上傳時間: 2013-11-14
上傳用戶:jiangshandz
在C8051F系列單片機中集成有多通道8位、10位、12位或16位的SAR型ADC,能夠滿足大多數數據采集的應用需求;集成跟蹤和保持電路;集成模擬多路復用器(AMUX)。 采樣頻率從100ksps到1Msps。 片內溫度傳感器可直接配置到ADC的輸入端。 C8051F04x系列集成可編程增益放大器(PGA)和高電壓差分放大器(HVDA),可接受60V的差動模擬電壓輸入。 集成越限檢測器,可監視模擬量的變化范圍,越限能產生中斷。 C8051F06x系列集成DMA接口,提高對轉換結果的讀取效率。 ADC轉換啟動方式:軟件設置寄存器位啟動;定時器溢出啟動;外部管腳信號啟動。
上傳時間: 2013-10-13
上傳用戶:jx_wwq
AD9670支持醫療超聲應用,專門針對低成本、低功耗、小尺寸及易用性而設計。它內置8通道的可變增益放大器(VGA)、低噪聲前置放大器(LNA)、具有可編程相位旋轉功能的CW諧波抑制I/Q解調器、抗混疊濾波器(AAF)、模數轉換器(ADC)以及用于處理數據和降低帶寬的數字解調器和抽取器。
上傳時間: 2014-11-05
上傳用戶:lo25643
CS1150中文用戶手冊:CS1150是低功耗模數轉換芯片。有效分辨率17位,輸出24位 數據。工作電壓2.7V~5.5V、集成50Hz、60Hz陷波、128倍增益放大器、參考電壓為 0.1V~5V、集成SPI接口。可以廣泛使用在工業控制、量重、液體/氣體化學分析、 血液分析、智能發送器、便攜測量儀器領域。 目 錄: 1 CS1150功能說明. 1.1 CS1150主要功能特性. 1.2 應用場合. 1.3 功能描述. 2 芯片絕對最大極限值. 2.1 CS1150數字邏輯特性. 2.2 CS1150的管腳和封裝. 2.3 CS1150時序. 3 CS1150功能模塊描述. 3.1.可選增益放大器. 3.2.調制器. 3.3 外接參考電壓. 3.4 時鐘單元. 3.5 數字濾波器. 3.6 串行總線接口. 3.6.1 片選信號. 3.6.2 串行時鐘. 3.6.3 數據輸入輸出. 4 CS1150的封裝. 圖 清 單: 圖1 CS1150原理框圖、特性說明. 圖2 CS1150管腳圖. 圖3 CS1150時序圖. 圖4 外部晶振連接圖. 表 清 單: 表1 CS1150極限值. 表2 CS1150數字邏輯特性. 表3 CS1150管腳描述. 表4 AVDD=5V時CS1150電氣特性. 表5 CS1150時序表. 表6 調制器采樣頻率表.
上傳時間: 2016-08-28
上傳用戶:linlin
HX711是一款專門為高精度電子稱而設計的24位A/D轉換芯片。與同類型其他芯片相比,該芯片集成了包括穩壓電源、片內時鐘振蕩器等其他同類型芯片需要的外圍電路。具有集成度高、響應速度快、抗干擾能力強等優點。具有可編程增益放大器,對于從稱重傳感器中輸出的最大為10mV電壓來說,無疑是一個很好的選擇
上傳時間: 2020-12-17
上傳用戶:
模擬電路設計本身是一個非常復雜的學科,而對相關器件的了解更是學習中的重中之重,本期電子書教程主要圍繞模擬電子器件,梳理有關模擬設計基礎的基本設計技術。包括理想的運算放大器基礎知識、運算放大器錯誤源和規格以及專業放大器,如儀表放大器、可變增益放大器、對數放大器、模擬倍頻器、模擬開關和基準電壓源等。 本書共計65篇文章、18萬字,目的是為廣大從事該模擬設計的工程師以及電子工程相關學子提供學習資料和設計參考指南。
標簽: 模擬電子器件
上傳時間: 2021-10-24
上傳用戶:bluedrops
本小節將回顧運算放大器增益帶寬乘積 (GBWP) 即 G×BW 概念。在計算 AC閉環增益以前需要 GBWP 這一參數。首先,我們需要 GBWP(有時也稱作GBP),用于計算運算放大器閉環截止頻率。另外,我們在計算運算放大器開環響應的主極點頻率 f0 時也需要 GBWP。在 f0 以下頻率,第 2 部分的 DC 增益誤差計算方法有效,因為運算放大器的開環增益為恒定;該增益等于 AOL_DC。但是,超出 f0 頻率以后,則必須使用 AC計算方法,我們將在后面小節詳細討論。
上傳時間: 2014-07-14
上傳用戶:yczrl
在第 1 部分中,我們計算了頻率域中非反相運算放大器結構的閉環傳輸函數。特別是,我們通過假設運算放大器具有一階開環響應,推導出了傳輸函數。計算增益誤差時,振幅響應很重要。
上傳時間: 2013-12-20
上傳用戶:674635689
摘要:用單片機控制放大器增益, 實現放大器增益擴程功能, 以滿足不同幅度信號對放大器增益的要求分析了單片機控制放大器增益的原理、設計思路,給出了計算公式和設計電路.
上傳時間: 2013-10-23
上傳用戶:michael20
設計了一種用于高速ADC中的高速高增益的全差分CMOS運算放大器。主運放采用帶開關電容共模反饋的折疊式共源共柵結構,利用增益提高和三支路電流基準技術實現一個可用于12~14 bit精度,100 MS/s采樣頻率的高速流水線(Pipelined)ADC的運放。設計基于SMIC 0.25 μm CMOS工藝,在Cadence環境下對電路進行Spectre仿真。仿真結果表明,在2.5 V單電源電壓下驅動2 pF負載時,運放的直流增益可達到124 dB,單位增益帶寬720 MHz,轉換速率高達885 V/μs,達到0.1%的穩定精度的建立時間只需4 ns,共模抑制比153 dB。
上傳時間: 2014-12-23
上傳用戶:jiiszha