亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

算<b>放大器</b>原理

  • 運算放大器中的虛斷虛短應用

      虛短和虛斷的概念   由于運放的電壓放大倍數很大,一般通用型運算放大器的開環電壓放大倍數都在80 dB以上。而運放的輸出電壓是有限的,一般在 10 V~14 V。因此運放的差模輸入電壓不足1 mV,兩輸入端近似等電位,相當于 “短路”。開環電壓放大倍數越大,兩輸入端的電位越接近相等。   “虛短”是指在分析運算放大器處于線性狀態時,可把兩輸入端視為等電位,這一特性稱為虛假短路,簡稱虛短。顯然不能將兩輸入端真正短路。   由于運放的差模輸入電阻很大,一般通用型運算放大器的輸入電阻都在1MΩ以上。因此流入運放輸入端的電流往往不足1uA,遠小于輸入端外電路的電流。故 通常可把運放的兩輸入端視為開路,且輸入電阻越大,兩輸入端越接近開路。“虛斷”是指在分析運放處于線性狀態時,可以把兩輸入端視為等效開路,這一特性 稱為虛假開路,簡稱虛斷。顯然不能將兩輸入端真正斷路。   在分析運放電路工作原理時,首先請各位暫時忘掉什么同向放大、反向放大,什么加法器、減法器,什么差動輸入……暫時忘掉那些輸入輸出關系的公式……這些東東只會干擾你,讓你更糊涂﹔也請各位暫時不要理會輸入偏置電流、共模抑制比、失調電壓等電路參數,這是設計者要考慮的事情。我們理解的就是理想放大器(其實在維修中和大多數設計過程中,把實際放大器當做理想放大器來分析也不會有問題)。

    標簽: 運算放大器 虛斷

    上傳時間: 2013-11-04

    上傳用戶:181992417

  • 集成運算放大器的應用

    實驗八 集成運算放大器一、實驗目的1.學習集成運算放大器的使用方法。2.掌握集成運算放大器的幾種基本運算方法。二、預習內容及要求集成運算放大器是具有高開環放大倍數的多級直接耦合放大電路。在它外部接上負反饋支路和一定的外圍元件便可組成不同運算形式的電路。本實驗只對反相比例、同相比例、反相加法和積分運算進行應用研究。1.圖1是反相比例運算原理圖。反相比例運算輸出電壓 和輸入電壓 的關系為:

    標簽: 集成運算放大器

    上傳時間: 2013-11-10

    上傳用戶:zuozuo1215

  • 磁芯電感器的諧波失真分析

    磁芯電感器的諧波失真分析 摘  要:簡述了改進鐵氧體軟磁材料比損耗系數和磁滯常數ηB,從而降低總諧波失真THD的歷史過程,分析了諸多因數對諧波測量的影響,提出了磁心性能的調控方向。 關鍵詞:比損耗系數, 磁滯常數ηB ,直流偏置特性DC-Bias,總諧波失真THD  Analysis on THD of the fer rite co res u se d i n i nductancShi Yan Nanjing Finemag Technology Co. Ltd., Nanjing 210033   Abstract:    Histrory of decreasing THD by improving the ratio loss coefficient and hysteresis constant of soft magnetic ferrite is briefly narrated. The effect of many factors which affect the harmonic wave testing is analysed. The way of improving the performance of ferrite cores is put forward.  Key words: ratio loss coefficient,hysteresis constant,DC-Bias,THD  近年來,變壓器生產廠家和軟磁鐵氧體生產廠家,在電感器和變壓器產品的總諧波失真指標控制上,進行了深入的探討和廣泛的合作,逐步弄清了一些似是而非的問題。從工藝技術上采取了不少有效措施,促進了質量問題的迅速解決。本文將就此熱門話題作一些粗淺探討。  一、 歷史回顧 總諧波失真(Total harmonic distortion) ,簡稱THD,并不是什么新的概念,早在幾十年前的載波通信技術中就已有嚴格要求<1>。1978年郵電部公布的標準YD/Z17-78“載波用鐵氧體罐形磁心”中,規定了高μQ材料制作的無中心柱配對罐形磁心詳細的測試電路和方法。如圖一電路所示,利用LC組成的150KHz低通濾波器在高電平輸入的情況下測量磁心產生的非線性失真。這種相對比較的實用方法,專用于無中心柱配對罐形磁心的諧波衰耗測試。 這種磁心主要用于載波電報、電話設備的遙測振蕩器和線路放大器系統,其非線性失真有很嚴格的要求。  圖中  ZD   —— QF867 型阻容式載頻振蕩器,輸出阻抗 150Ω, Ld47 —— 47KHz 低通濾波器,阻抗 150Ω,阻帶衰耗大于61dB,       Lg88 ——并聯高低通濾波器,阻抗 150Ω,三次諧波衰耗大于61dB Ld88 ——并聯高低通濾波器,阻抗 150Ω,三次諧波衰耗大于61dB FD   —— 30~50KHz 放大器, 阻抗 150Ω, 增益不小于 43 dB,三次諧波衰耗b3(0)≥91 dB, DP  —— Qp373 選頻電平表,輸入高阻抗, L ——被測無心罐形磁心及線圈, C  ——聚苯乙烯薄膜電容器CMO-100V-707APF±0.5%,二只。 測量時,所配用線圈應用絲包銅電磁線SQJ9×0.12(JB661-75)在直徑為16.1mm的線架上繞制 120 匝, (線架為一格) , 其空心電感值為 318μH(誤差1%) 被測磁心配對安裝好后,先調節振蕩器頻率為 36.6~40KHz,  使輸出電平值為+17.4 dB, 即選頻表在 22′端子測得的主波電平 (P2)為+17.4 dB,然后在33′端子處測得輸出的三次諧波電平(P3), 則三次諧波衰耗值為:b3(+2)= P2+S+ P3 式中:S 為放大器增益dB 從以往的資料引證, 就可以發現諧波失真的測量是一項很精細的工作,其中測量系統的高、低通濾波器,信號源和放大器本身的三次諧波衰耗控制很嚴,阻抗必須匹配,薄膜電容器的非線性也有相應要求。濾波器的電感全由不帶任何磁介質的大空心線圈繞成,以保證本身的“潔凈” ,不至于造成對磁心分選的誤判。 為了滿足多路通信整機的小型化和穩定性要求, 必須生產低損耗高穩定磁心。上世紀 70 年代初,1409 所和四機部、郵電部各廠,從工藝上改變了推板空氣窯燒結,出窯后經真空罐冷卻的落后方式,改用真空爐,并控制燒結、冷卻氣氛。技術上采用共沉淀法攻關試制出了μQ乘積 60 萬和 100 萬的低損耗高穩定材料,在此基礎上,還實現了高μ7000~10000材料的突破,從而大大縮短了與國外企業的技術差異。當時正處于通信技術由FDM(頻率劃分調制)向PCM(脈沖編碼調制) 轉換時期, 日本人明石雅夫發表了μQ乘積125 萬為 0.8×10 ,100KHz)的超優鐵氧體材料<3>,其磁滯系數降為優鐵

    標簽: 磁芯 電感器 諧波失真

    上傳時間: 2014-12-24

    上傳用戶:7891

  • autocad 2012 官方簡體中文版下載

    AutoCAD是美國Autodesk公司首次于1982年生產的自動計算機輔助設計軟件,用于二維繪圖、詳細繪制、設計文檔和基本三維設計。Autodesk公司借助世界領先的二維和三維設計軟件之一--AutoCAD ,軟件中強大、靈活的功能,實現卓越的設計和造型。 AutoCAD 2012特點: (1)具有完善的圖形繪制功能。 (2)有強大的圖形編輯功能。 (3)可以采用多種方式進行二次開發或用戶定制。 (4)可以進行多種圖形格式的轉換,具有較強的數據交換能力。 (5)支持多種硬件設備。 (6)支持多種操作平臺。 (7)具有通用性、易用性,適用于各類用戶此外,從AutoCAD2000開始,該系統又增添了許多強大的功能,如AutoCAD設計中心(ADC)、多文檔設計環境。 AutoCAD 2012官方簡體中文正式版安裝說明: 1.啟動安裝 Autodesk AutoCAD 2012 2.輸入AutoCAD安裝序列號: 666-69696969, 667-98989898, 400-45454545 3.輸入AutoCAD密匙: 001D1 4.完成安裝,重啟AutoCAD。 5.點擊激活按鈕之前 你有兩個選擇: a)禁用您的網絡或拔掉網線; b)點擊激活后它會告訴您,您的序列號是錯誤的,這時點擊上一步等一會再點擊激活即可。 選擇了a或b后看下一步。 6.在激活界面中選擇我擁有一個Autodesk激活碼 7.一旦到了激活屏幕:啟動注冊機如果你是32位的請啟用32位的注冊機如果是64位的請啟動64位的注冊機。 8.先粘貼激活界面的申請號至注冊機中的Request中, 9.點擊Generate算出激活碼,在注冊機里點Mem Patch鍵,否則無法激活,提示注冊碼不正確。 10.最后復制Activation中的激活碼至“輸入激活碼”欄中,并點擊下一步,即會提示激活成功。

    標簽: autocad 2012 簡體中文

    上傳時間: 2013-11-16

    上傳用戶:zxh122

  • 一款485通訊隔離產品的EMC設計與改善

    電子、電氣產品的設計,必須保證在一定的電磁環境中能正常工作,既滿足標準規定的抗干擾極限值要求,在受到一定的電磁干擾時,無性能降級或故障;又要滿足標準規定的電磁輻射極限值的要求,對電磁環境不構成污染。所以,產品設計之初,就要從分析產品預期的電磁環境、干擾源、耦合途徑和敏感部件入手,采用相應的技術措施,抑制干擾源、切斷或削弱耦合途徑,增強敏感部件的抗干擾能力等。文中詳細介紹了一款485通訊隔離產品從輻射超標到順利通過FCC CLASS B認證,在原理設計、PCB制板等多方面所做的各項改進措施。文中所提到的方法及規則,對產品EMC設計具有很大的參考及指導意義。

    標簽: 485 EMC 通訊隔離

    上傳時間: 2013-10-24

    上傳用戶:sz_hjbf

  • 等離子電源的工作原理

    電源的工作原理其實就是D類功率放大器,即串聯型電壓開關放大器,如圖1.36所示。

    標簽: 等離子 電源 工作原理

    上傳時間: 2013-11-08

    上傳用戶:ks201314

  • 漏電保護器的工作原理、使用范圍、接線方式

    漏電保護器的工作原理:漏電保護器主要包括檢測元件(零序電流互感器)、中間環節(包括放大器、比較器、脫扣器等)、執行元件(主開關)以及試驗元件等幾個部分。三相四線制供電系統的漏電保護器工作原理示意圖。TA 為零序電流互感器,GF 為主開關,TL為主開關的分勵脫扣器線圈。在被保護電路工作正常,沒有發生漏電或觸電的情況下,由克希荷夫定律可知,通過TA 一次側的電流相量和等于零,即:這樣TA 的二次側不產生感應電動勢,漏電保護器不動作,系統保持正常供電。當被保護電路發生漏電或有人觸電時,由于漏電電流的存在,通過TA一次側各相電流的相量和不再等于零,產生了漏電電流Ik。在鐵心中出現了交變磁通。在交變磁通作用下,TL二次側線圈就有感應電動勢產生,此漏電信號經中間環節進行處理和比較,當達到預定值時,使主開關分勵脫扣器線圈TL 通電,驅動主開關GF 自動跳閘,切斷故障電路,從而實現保護。用于單相回路及三相三線制的漏電保護器的工作原理與此相同,不贅述。

    標簽: 漏電保護器 工作原理 接線方式

    上傳時間: 2013-10-19

    上傳用戶:zhangjinzj

  • AVR系列單片機C語言編程與應用實例

    本書針對Atmel公司的AVR系列單片機和ImageCraft公司的ICC AVR開發環境,詳細地介紹了AT90LS8535的C語言程序設計。全書共有13章,其內容既涉及到了單片機的結構原理、指令系統、內容資源和外部功能擴展,又包含了單片機的編程工具——ICC AVR C編程器的數據類型、控制流、函數和指針等。本書的特點是:深入淺出,從最基本的概念開始,循序漸進地講解單片機的應用開發;列舉了大量實例,使讀者能從實際應用中掌握單片機的開發與應用技術。本書適合作為從事單片機開發人員的參考用書。書中先后講解了C語言基礎、AVR單片機基礎,并舉了一些簡單的實例。本書非常適合初學者。 【目錄信息】 第1章 單片機系統概述 1. 1 AVR系列單片機的特點 1. 2 AT90系列單片機簡介 第2章 AT90LS8535單片機的基礎知識 2. 1 AT90LS8535單片機的總體結構 2. 1. 1 AT90LS8535單片機的中央處理器 2. 1. 2 AT90LS8535單片機的存儲器組織 2. 1. 3 AT90LS8535單片機的I/O接口 2. 1. 4 AT90LS8535單片機的內部資源 2. 1. 5 AT90LS8535單片機的時鐘電路 2. 1. 6 AT90LS8535單片機的系統復位 2. 1. 7 AT90LS8535單片機的節電方式 2. 1. 8 AT90LS8535單片機的芯片引腳 2. 2 AT90LS8535單片機的指令系統 2. 2. 1 匯編指令格式 2. 2. 2 尋址方式 2. 2. 3 偽指令 2. 2. 4 指令類型及數據操作方式 2. 3 應用程序設計 2. 3. 1 程序設計方法 2. 3. 2 應用程序舉例 第3章 AT90LS8535單片機的C編程 3. 1 支持高級語言編程的AVR系列單片機 3. 2 AVR的C編譯器 3. 3 ICCAVR介紹 3. 3. 1 安裝ICCAVR 3. 3. 2 設置ICCAVR 3. 4 用ICCAVR編寫應用程序 3. 5 下載程序文件 第4章 數據類型. 運算符和表達式 4. 1 ICCAVR支持的數據類型 4. 2 常量與變量 4. 2. 1 常量 4. 2. 2 變量 4. 3 AT90LS8535的存儲空間 4. 4 算術和賦值運算 4. 4. 1 算術運算符和算術表達式 4. 4. 2 賦值運算符和賦值表達式 4. 5 邏輯運算 4. 6 關系運算 4. 7 位操作 4. 7. 1 位邏輯運算 4. 7. 2 移位運算 4. 8 逗號運算 第5章 控制流 5. 1 C語言的結構化程序設計 5. 1. 1 順序結構 5. 1. 2 選擇結構 5. 1. 3 循環結構 5. 2 選擇語句 5. 2. 1 if語句 5. 2. 2 switch分支 5. 2. 3 選擇語句的嵌套 5. 3 循環語句 5. 3. 1 while語句 5. 3. 2 do…while語句 5. 3. 3 for語句 5. 3. 4 循環語句嵌套 5. 3. 5 break語句和continue語句 第6章 函數 6. 1 函數的定義 6. 1. 1 函數的定義的一般形式 6. 1. 2 函數的參數 6. 1. 3 函數的值 6. 2 函數的調用 6. 2. 1 函數的一般調用 6. 2. 2 函數的遞歸調用 6. 2. 3 函數的嵌套調用 6. 3 變量的類型及其存儲方式 6. 3. 1 局部變量 6. 3. 2 局部變量的存儲方式 6. 3. 3 全局變量 6. 3. 4 全局變量的存儲方式 6. 4 內部函數和外部函數 6. 4. 1 內部函數 6. 4. 2 外部函數 第7章 指針 7. 1 指針和指針變量 7. 2 指針變量的定義和引用 7. 2. 1 指針變量的定義 7. 2. 2 指針變量的引用 7. 2. 3 指針變量作為函數參數 7. 3 數組與指針 7. 3. 1 指向數組元素的指針變量 7. 3. 2 數組元素的引用 通過指針 7. 3. 3 數組名作為函數參數 7. 3. 4 指向多維數組的元素的指針變量 7. 4 字符串與指針 7. 4. 1 字符串的表示形式 7. 4. 2 字符串指針變量與字符數組的區別 7. 5 函數與指針 7. 5. 1 函數指針變量 7. 5. 2 指針型函數 7. 6 指向指針的指針 7. 7 有關指針數據類型和運算小結 7. 7. 1 有關指針的數據類型的小結 7. 7. 2 指針運算的小結 第8章 結構體和共用體 8. 1 結構體的定義和引用 8. 1. 1 結構體類型變量的定義 8. 1. 2 結構體類型變量的引用 8. 2 結構類型的說明 8. 3 結構體變量的初始化和賦值 8. 3. 1 結構體變量的初始化 8. 3. 2 結構體變量的賦值 8. 4 結構體數組 8. 4. 1 結構體數組的定義 8. 4. 2 結構體數組的初始化 8. 5 指向結構體類型變量的指針 8. 5. 1 指向結構體變量的指針 8. 5. 2 指向結構體數組的指針 8. 5. 3 指向結構體變量的指針做函數參數 8. 6 共用體 8. 6. 1 共用體的定義 8. 6. 2 共用體變量的引用 第9章 A190LS8535的內部資源 9. 1 I/O 口 9. 1. 1 端口A 9. 1. 2 端口B 9. 1. 3 端口C 9. 1. 4 端口D 9. 1. 5 I/O口的編程 9. 2 中斷 9. 2. 1 單片機的中斷功能 9. 2. 2 AT90LS8535單片機的中斷系統 9. 2. 3 1CCAVRC編譯器的中斷操作 9. 2. 4 中斷的編程 9. 3 串行數據通信 9. 3. 1 數據通信基礎 9. 3. 2 AT90LS8535的同步串行接口 9. 3. 3 AT90LS8535的異步串行接口 9. 4 定時/計數器 9. 4. 1 定時/計數器的分頻器 9. 4. 2 8位定時/計數器0 9. 4. 3 16位定時/計數器1 9. 4. 4 8位定時/計數器2 9. 5 EEPROM 9. 5. 1 與EEPROM有關的寄存器 9. 5. 2 EEPROM讀/寫操作 9. 5. 3 EEPROM的應用舉例 9. 6 模擬量輸入接口 9. 6. 1 模數轉換器的結構 9. 6. 2 ADC的使用 9. 6. 3 與模數轉換器有關的寄存器 9. 6. 4 ADC的噪聲消除 9. 6. 5 ADC的應用舉例 9. 7 模擬比較器 9. 7. 1 模擬比較器的結構 9. 7. 2 與模擬比較器有關的寄存器 9. 7. 3 模擬比較器的應用舉例 第10章 AT90LS8535的人機接口編程 10. 1 鍵盤接口 10. 1. 1 非矩陣式鍵盤 10. 1. 2 矩陣式鍵盤 10. 2 LED顯示輸出 10. 2. 1 LED的靜態顯示 10. 2. 2 LED的動態掃描顯示 10. 2. 3 動態掃描顯示專用芯片MC14489 10. 3 LCD顯示輸出 10. 3. 1 字符型LCD 10. 3. 2 點陣型LCD 10. 4 ISD2500系列語音芯片的編程 10. 4. 1 ISD2500的片內結構和引腳 10. 4. 2 ISD2500的操作 10. 4. 3 ISD2500和單片機的接口及編程 10. 5 TP-uP微型打印機 10. 5. 1 TP-uP打印機的接口和邏輯時序 10. 5. 2 P-uP打印機的打印命令和字符代碼 10. 5. 3 AT90LS8535與TP-uP系列打印機的接口及編程 10. 6 IC卡 10. 6. 1 IC卡讀寫裝置 10. 6. 2 IC卡軟件 第11章 AT90LS8535的外圍擴展 11. 1 簡單I/O擴展芯片 11. 1. 1 用74LS377擴展數據輸出接口 11. 1. 2 數據輸入接口 11. 2 模擬量輸出 11. 2. 1 D/A轉換器簡介 11. 2. 2 8位數模轉換器DAC0832 11. 2. 3 8位數模轉換器與單片機的接口及編程 11. 2. 4 12位數模轉換器DACl230 11. 2. 5 12位數模轉換器與單片機的接口及編程 11. 3 可編程I/O擴展芯片8255A 11. 3. 1 8255A的引腳和內部結構 11. 3. 2 8255A的工作方式 11. 3. 3 8255A的控制字 11. 3. 4 AT90LS8535和8255A的接口 11. 4 帶片內RAM的I/O擴展芯片8155 11. 4. 1 8155的引腳和內部結構. 11. 4. 2 8155的I/O口工作方式 11. 4. 3 8155的定時/計數器 11. 4. 4 8155的命令和狀態字 11. 4. 5 AT90LS8535與8155的接口及編程 11. 5 定時/計數器芯片8253 11. 5. 1 8253的信號引腳和邏輯結構 11. 5. 2 8253的工作方式 11. 5. 3 8253的控制字 11. 5. 4 AT90LS8535與8253的接口及編程 11. 6 實時時鐘芯片DS1302 11. 6. 1 DS1302的引腳和內部結構 11. 6. 2 DS1302的控制方式 11. 6. 3 AT90LS8535與DS1302的接口與編程 11. 7 數字溫度傳感器DS18B20 11. 7. 1 DSl8B20的引腳和內部結構 11. 7. 2 DS18B20的溫度測量 11. 7. 3 AT90LS8535與DS18B20的接口與編程 第12章 AT90LS8535的通信編程 12. 1 串口通信 12. 1. 1 異步串口UART通信 12. 1. 2 同步串口SPI通信 12. 2 I2C總線 12. 2. 1 I2C總線協議 12. 2. 2 采用AT90LS8535的并行I/O口模擬I2C總線 12. 3 CAN總線 12. 3. 1 CAN總線的特點 12. 3. 2 CAN協議的信息格式 12. 3. 3 CAN控制器SJA1000 12. 3. 4 AT90LS8535與SJA1000的接口及編程 12. 4 AT90LS8535單片機與PC的串行通信 12. 4. 1 基于VC 6. 0的PC串口通信 12. 4. 2 應用實例 第13章 系統設計中的程序處理方法 13. 1 數字濾波處理 13. 1. 1 平滑濾波 13. 1. 2 中值濾波 13. 1. 3 程序判斷濾波 13. 2 非線性處理 13. 2. 1 查表法 13. 2. 2 線性插值法

    標簽: AVR 單片機 C語言編程 應用實例

    上傳時間: 2013-11-04

    上傳用戶:元宵漢堡包

  • AVR單片機原理及應用

    《AVR單片機原理及應用》詳細介紹了ATMEL公司開發的ATmega8系列高速嵌入式單片機的硬件結構、工作原理、指令系統、接口電路、C編程實例,以及一些特殊功能的應用和設計,對讀者掌握和使用其他ATmega8系列的單片機具有極高的參考價值 AVR單片機原理及應用》具有較強的系統性和實用性,可作為有關工程技術人員和硬件工程師的應用手冊,亦可作為高等院校自動化、計算機、儀器儀表、電子等專業的教學參考書。 目錄 第1章 緒論 1.1 AVR單片機的主要特性 1.2 主流單片機系列產品比較 1.2.1 ATMEL公司的單片機 1.2.2 Mkcochip公司的單片機 1.2.3 Cygnal公司的單片機 第2章 AVR系統結構概況 2.1 AVR單片機ATmega8的總體結構 2.1.1 ATmega8特點 2.1.2 結構框圖 2.1.3 ATmega8單片機封裝與引腳 2.2 中央處理器 2.2.1 算術邏輯單元 2.2.2 指令執行時序 2.2.3 復位和中斷處理 2.3 ATmega8存儲器 2.3.1 Flash程序存儲器 2.3.2 SRAM 2.3.3 E2pROM 2.3.4 I/O寄存器 2.3.5 ATmega8的鎖定位、熔絲位、標識位和校正位 2.4 系統時鐘及其分配 2.4.1 時鐘源 2.4.2 外部晶振 2.4.3 外部低頻石英晶振 2.4.4 外部:RC振蕩器 2.4.5 可校準內部.RC振蕩器 2.4.6 外部時鐘源 2.4.7 異步定時器/計數器振蕩器 2.5 系統電源管理和休眠模式 2.5.1 MCU控制寄存器 2.5.2 空閑模式 2.5.3 ADC降噪模式 2.5.4 掉電模式 2.5.5 省電模式 2.5.6 等待模式 2.5.7 最小功耗 2.6 系統復位 2.6.1 復位源 2.6.2 MCU控制狀態寄存器——MCUCSR 2.6.3 內部參考電壓源 2.7 I/O端口 2.7.1 通用數字I/O端口 2.7.2 數字輸入使能和休眠模式 2.7.3 端口的第二功能 第3章 ATmega8指令系統 3.1 ATmega8匯編指令格式 3.1.1 匯編語言源文件 3.1.2 指令系統中使用的符號 3.1.3 ATmega8指令 3.1.4 匯編器偽指令 3.1.5 表達式 3.1.6 文件“M8def.inc” 3.2 尋址方式和尋址空間 3.3 算術和邏輯指令 3.3.1 加法指令 3.3.2 減法指令 3.3.3 取反碼指令 3.3.4 取補碼指令 3.3.5 比較指令 3.3.6 邏輯與指令 3.3.7 邏輯或指令 3.3.8 邏輯異或 3.3.9 乘法指令 3.4 轉移指令 3.4.1 無條件轉移指令 3.4.2 條件轉移指令 3.4.3 子程序調用和返回指令 3.5 數據傳送指令 3.5.1 直接尋址數據傳送指令 3.5.2 間接尋址數據傳送指令 3.5.3 從程序存儲器中取數裝入寄存器指令 3.5.4 寫程序存儲器指令 3.5.5 I/0端口數據傳送 3.5.6 堆棧操作指令 3.6 位操作和位測試指令 3.6.1 帶進位邏輯操作指令 3.6.2 位變量傳送指令 3.6.3 位變量修改指令 3.7 MCU控制指令 3.8 指令的應用 第4章 中斷系統 4.1 外部向量 4.2 外部中斷 4.3 中斷寄存器 第5章 自編程功能 5.1 引導加載技術 5.2 相關I/O寄存器 5.3 Flash程序存儲器的自編程 5.4 Flash自編程應用 第6章 定時器/計數器 6.1 定時器/計數器預定比例分頻器 6.2 8位定時器/計數器O(T/CO) 6.3 16位定時器/計數器1(T/C1) 6.3.1 T/C1的結構 6.3.2 T/C1的操作模式 6.3.3 T/121的計數時序 6.3.4 T/C1的寄存器 6.4 8位定時器/計數器2(T/C2) 6.4.1 T/C2的組成結構 6.4.2 T/C2的操作模式 6.4.3 T/C2的計數時序 6.4.4 T/02的寄存器 6.4.5 T/C2的異步操作 6.5 看門狗定時器 第7章 AVR單片機通信接口 7.1 AVR單片機串行接口 7.1.1 同步串行接口 7.1.2 通用串行接口 7.2 兩線串行TWT總線接口 7.2.1 TWT模塊概述 7.2.2 TWT寄存器描述 7.2.3 TWT總線的使用 7.2.4 多主機系統和仲裁 第8章 AVR單片機A/D轉換及模擬比較器 8.1 A/D轉換 8.1.1 A/D轉換概述 8.1.2 ADC噪聲抑制器 8.1.3 ADC有關的寄存器 8.2 AvR單片機模擬比較器 第9章 系統擴展技術 9.1 串行接口8位LED顯示驅動器MAX7219 9.1.1 概述 9.1.2 引腳功能及內部結構 9.1.3 操作說明 9.1.4 應用 9.1.5 軟件設計 9.2 AT24C系列兩線串行總線E2PPOM 9.2.1 概述 9.2.2 引腳功能及內部結構 9.2.3 操作說明 9.2.4 軟件設計 9.3 AT93C46——三線串行總線E2PPOM接口芯片 9.3.1 概述 9.3.2 內部結構及引腳功能 9.3.3 操作說明 9.3.4 軟件設計 9.4 串行12位的ADCTL543 9.4.1 概述 9.4.2 內部結構及引腳功能 9.4.3 操作說明 9.4.4 AD620放大器介紹 9.4.5 軟件設計 9.5 串行輸出16位ADCMAXl95 9.5.1 概述 9.5.2 引腳功能及內部結構 9.5.3 操作說明 9.5.4 應用 9.5.5 軟件設計 9.6 串行輸入DACTLC5615 9.6.1 概述 9.6.2 引腳功能及內部結構 9.6.3 操作說明 9.6.4 軟件設計 9.7 串行12位的DACTLC5618 9.7.1 概述 9.7.2 內部結構及引腳功能 9.7.3 操作說明 9.7.4 軟件設計 9.8 串行非易失性靜態RAMX24C44 9.8.1 概述 9.8.2 引腳功能及內部結構 9.8.3 操作說明 9.8.4 軟件設計 9.9 數據閃速存儲器AT45DB041B 9.9.1 概述 9.9.2 引腳功能及內部結構 9.9.3 操作說明 9.9.4 軟件設計 9.10 GM8164串行I/0擴展芯片 9.10.1 概述 9.10.2 引腳功能說明 9.10.3 操作說明 9.10.4 軟件設計 9.11 接口綜合實例 附錄1 ICCACR簡介 附錄2 ATmega8指令表 參考文獻

    標簽: AVR 單片機原理

    上傳時間: 2013-10-29

    上傳用戶:lanwei

  • 用C51實現無功補償中電容組循環投切的算法

    介紹了用單片機C 語言實現無功補償中電容組循環投切的基本原理和算法,并舉例說明。關鍵詞:循環投切;C51;無功補償中圖分類號: TM76 文獻標識碼: BAbstract: This paper introduces the aplication of C51 in the controlling of capacitorsuits cycle powered to be on and off in reactive compensation.it illustrate thefondamental principle and algorithm with example.Key words: cycle powered to be on and off; C51; reactive compensation 為提高功率因數,往往采用補償電容的方法來實現。而電容器的容量是由實時功率因數與標準值進行比較來決定的,實時功率因數小于標準值時,需投入電容組,實時功率因數大于標準值時,則需切除電容組。投切方式的不合理,會對電容器造成損壞,現有的控制器多采用“順序投切”方式,在這種投切方式下排序在前的電容器組,先投后切;而后面的卻后投先切。這不僅使處于前面的電容組經常處于運行狀態,積累熱量不易散失,影響其使用壽命,而且使后面的投切開關經常動作,同樣減少壽命。合理的投切方式應為“循環投切”。這種投切方式使先投入的運行的電容組先退出,后投的后切除,從而使各組電容及投切開關使用機率均等,降低了電容組的平均運行溫度,減少了投切開關的動作次數,延長了其使用壽命。

    標簽: C51 無功補償 循環 電容

    上傳時間: 2014-12-27

    上傳用戶:hopy

主站蜘蛛池模板: 鹤山市| 松溪县| 长白| 手游| 岳西县| 三台县| 工布江达县| 洱源县| 永康市| 东莞市| 涿州市| 尖扎县| 祁连县| 象山县| 肇源县| 洛南县| 夹江县| 旌德县| 丘北县| 商洛市| 黑水县| 香港| 永昌县| 时尚| 开平市| 土默特右旗| 新野县| 和田县| 波密县| 梧州市| 西城区| 沂水县| 抚宁县| 信阳市| 尤溪县| 麻阳| 广南县| 裕民县| 山丹县| 余江县| 长丰县|