為了提高壓電超聲換能器的系統(tǒng)效率,保證換能器安全工作,利用換能器等效電路方法,分析了匹配電路的調(diào)振匹配和阻抗匹配功能.提出了頻率跟蹤結(jié)合數(shù)字電感實(shí)現(xiàn)調(diào)諧匹配的方法,并對(duì)調(diào)諧匹配方法進(jìn)行了實(shí)驗(yàn)驗(yàn)證.以含源網(wǎng)絡(luò)電路分析方法為基礎(chǔ),從理論上證明了實(shí)現(xiàn)換能器阻抗匹配的最佳條件
上傳時(shí)間: 2013-04-24
上傳用戶:xfbs821
本文研究的視頻處理系統(tǒng)是上海市科委技術(shù)攻關(guān)基金項(xiàng)目“計(jì)算機(jī)視覺(jué)及其芯片化實(shí)現(xiàn)”的一部分,主要完成計(jì)算機(jī)視覺(jué)系統(tǒng)的一些基本工作,即視頻圖像的采集、預(yù)處理和顯示等。 視頻圖像采集和預(yù)處理系統(tǒng)以Xilinx公司Virtex-ⅡPro系列的FPGA為核心控制器件,結(jié)合視頻模數(shù)轉(zhuǎn)換芯片和VGA顯示器,完成視頻圖像的實(shí)時(shí)采集、預(yù)處理和顯示。采集和顯示部分作為同外界交流信息的渠道,是構(gòu)成計(jì)算機(jī)視覺(jué)系統(tǒng)必不可少的一部分;圖像預(yù)處理則是計(jì)算機(jī)視覺(jué)系統(tǒng)進(jìn)行高層處理的基礎(chǔ),優(yōu)秀的預(yù)處理算法能有效改善圖像質(zhì)量,提高系統(tǒng)分析判斷的準(zhǔn)確性。 本文在介紹基于FPGA的視頻采集、預(yù)處理系統(tǒng)整體架構(gòu)的基礎(chǔ)上,圍繞以下四個(gè)方面展開(kāi)了工作: 1.研究并給出了兩種基于FPGA的設(shè)計(jì)方案用于實(shí)現(xiàn)YCrCb色度空間到RGB色度空間的轉(zhuǎn)換; 2.針對(duì)采集的視頻圖像,根據(jù)VGA顯示的要求,給出了一種實(shí)現(xiàn)圖像去隔行的方案; 3.分析了一系列圖像濾波的預(yù)處理算法,如均值濾波、中值濾波和自適應(yīng)濾波等,在比較和總結(jié)各算法特點(diǎn)的基礎(chǔ)上,提出了一種新的適用于處理混合噪聲的濾波算法:混合自適應(yīng)濾波法; 4.根據(jù)算法特點(diǎn)設(shè)計(jì)了多種采用FPGA實(shí)現(xiàn)的圖像濾波算法,并對(duì)硬件算法進(jìn)行RTL級(jí)的功能仿真和驗(yàn)證,還給出了各種濾波算法的實(shí)驗(yàn)結(jié)果,在此基礎(chǔ)上對(duì)各種算法的效果進(jìn)行直觀的比較。 文中,預(yù)處理算法的實(shí)現(xiàn)充分利用了FPGA的片內(nèi)資源,體現(xiàn)了FPGA在圖像處理方面的特點(diǎn)及優(yōu)勢(shì)。同時(shí),視頻采集和顯示的控制模塊也由同一FPGA芯片實(shí)現(xiàn),從而簡(jiǎn)化了系統(tǒng)整體結(jié)構(gòu)。視頻采集和預(yù)處理系統(tǒng)在FPGA上的成功實(shí)現(xiàn)為“計(jì)算機(jī)視覺(jué)及其芯片化實(shí)現(xiàn)”奠定了必要的基礎(chǔ)、提供了一定理論依據(jù)。
上傳時(shí)間: 2013-04-24
上傳用戶:我好難過(guò)
運(yùn)用Verilog語(yǔ)言來(lái)實(shí)現(xiàn)在FPGA的中值濾波
標(biāo)簽: Verilog FPGA 中值濾波 程序
上傳時(shí)間: 2013-08-04
上傳用戶:yd19890720
論文研究了基于Bayer格式的CCD原始圖像的顏色插值算法,并將設(shè)計(jì)的改進(jìn)算法應(yīng)用到以FPGA為核心的圖像采集前端。出于對(duì)成本和體積的考慮,一般的數(shù)字圖像采集系統(tǒng)采用單片CCD或CMOS圖像傳感器,然后在感光表面覆蓋一層顏色...
上傳時(shí)間: 2013-08-04
上傳用戶:zhengjian
隨著多媒體技術(shù)的發(fā)展,數(shù)字圖像處理已經(jīng)成為眾多應(yīng)用系統(tǒng)的核心和基礎(chǔ)。它的發(fā)展主要依賴于兩個(gè)性質(zhì)不同、自成體系但又緊密相關(guān)的研究領(lǐng)域:圖像處理算法及其相應(yīng)的電路實(shí)現(xiàn)。圖像處理系統(tǒng)的硬件實(shí)現(xiàn)—般有三種方式:專用的圖像處理器件集成芯片(Application Specific Integrated Circuit)、數(shù)字信號(hào)處理器(Digital Signal Process)和現(xiàn)場(chǎng)可編程門(mén)陣列(Field Programmable Gate Array)以及相關(guān)電路組成。它們可以實(shí)時(shí)高速完成各種圖像處理算法。圖像處理中,低層的圖像預(yù)處理的數(shù)據(jù)量很大,要求處理速度快,但運(yùn)算結(jié)果相對(duì)比較簡(jiǎn)單。相對(duì)于其他兩種方式,基于FPGA的圖像處理方式的系統(tǒng)更適合于圖像的預(yù)處理。本文設(shè)計(jì)了—種基于FPGA的小波域圖像去噪系統(tǒng)。首先,闡述了基于小波變換的圖像去噪算法原理,重點(diǎn)討論了小波鄰域閾值(NeighShrink)去噪算法,并給出了該算法相應(yīng)的Matlab 仿真;然后,為了改進(jìn)鄰域閾值去噪算法中對(duì)每個(gè)分解子帶都采用相同鄰域和閾值的缺點(diǎn),本文提出了基于最小二乘支持向量機(jī)(LS-SVM)分類的鄰域閾值去噪算法和以斯坦無(wú)偏估計(jì) (SURE)為準(zhǔn)則同時(shí)結(jié)合小波系數(shù)尺度間關(guān)系的鄰域閾值去噪算法。經(jīng)Matlab實(shí)驗(yàn)表明,相比于其他幾種經(jīng)典算法,本文提出的兩種改進(jìn)算法在濾除噪聲的同時(shí)能更好地保護(hù)圖像細(xì)節(jié),并在較高噪聲情況下能獲得更高的峰值信噪比。在此基礎(chǔ)上本文將提出的改進(jìn)小波鄰域閾值去噪算法進(jìn)行了相應(yīng)的簡(jiǎn)化,以滿足低噪聲處理要求且易于在FPGA上實(shí)現(xiàn);最后,給出了基于 FPGA的小波鄰域閾值去噪系統(tǒng)的總體結(jié)構(gòu)和FPGA內(nèi)部各功能模塊的具體實(shí)現(xiàn)方案,包括二維離散小波變換模塊、二維離散小波逆變換模塊、SDRAM存儲(chǔ)器控制模塊、去噪計(jì)算模塊和系統(tǒng)核心控制模塊,并對(duì)各個(gè)系統(tǒng)模塊和整體進(jìn)行了仿真驗(yàn)證,結(jié)果表明本文設(shè)計(jì)的基于FPGA 的小波鄰域閾值去噪系統(tǒng)能滿足實(shí)際的圖像處理要求,具有一定的理論和實(shí)際應(yīng)用價(jià)值。關(guān)鍵詞:圖像處理系統(tǒng),F(xiàn)PGA,圖像去噪算法,小波變換
上傳時(shí)間: 2013-05-16
上傳用戶:450976175
SVPWM算法的DSP源碼,實(shí)現(xiàn)逆變輸出與電網(wǎng)電壓同頻同相,并能跟蹤市電幅值變化
上傳時(shí)間: 2013-07-20
上傳用戶:yd19890720
介紹一種脈沖渦流無(wú)損檢測(cè)系統(tǒng)所使用的多波形專用PWM 信號(hào)發(fā)生器的設(shè)計(jì)。該信號(hào)發(fā)生器以單片機(jī)為核心控制單元,通過(guò)對(duì)外圍芯片的控制來(lái)實(shí)現(xiàn)對(duì)輸出波形的頻率、電壓幅值、占空比的連續(xù)調(diào)節(jié),并能對(duì)運(yùn)行信
上傳時(shí)間: 2013-04-24
上傳用戶:luominghua
現(xiàn)場(chǎng)可編程門(mén)陣列(FPGA)是一種可實(shí)現(xiàn)多層次邏輯器件。基于SRAM的FPGA結(jié)構(gòu)由邏輯單元陣列來(lái)實(shí)現(xiàn)所需要的邏輯函數(shù)。FPGA中,互連線資源是預(yù)先定制的,這些資源是由各種長(zhǎng)度的可分割金屬線,緩沖器和.MOS管實(shí)現(xiàn)的,所以相對(duì)于ASIC中互連線所占用的面積更大。為了節(jié)省芯片面積,一般都采用單個(gè)MOS晶體管來(lái)連接邏輯資源。MOS晶體管的導(dǎo)通電阻可以達(dá)到千歐量級(jí),可分割金屬線段的電阻相對(duì)于MOS管來(lái)說(shuō)是可以忽略的,然而它和地之間的電容達(dá)到了0.1pf[1]。為了評(píng)估FPGA的性能,用HSPICE仿真模型雖可以獲得非常精確的結(jié)果,但是基于此模型需要花費(fèi)太多的時(shí)間。這在基于時(shí)序驅(qū)動(dòng)的工藝映射和布局布線以及靜態(tài)時(shí)序分析中都是不可行的。于是,非常迫切地需要一種快速而精確的模型。 FPGA中連接盒、開(kāi)關(guān)盒都是由MOS管組成的。FPGA中的時(shí)延很大部分取決于互連,而MOS傳輸晶體管在互連中又占了很大的比重。所以對(duì)于MOS管的建模對(duì)FPGA時(shí)延估算有很大的影響意義。對(duì)于MOS管,Muhammad[15]采用導(dǎo)通電阻來(lái)代替MOS管,然后用。Elmore[3]時(shí)延和Rubinstein[4]時(shí)延模型估算互連時(shí)延。Elmore時(shí)延用電路的一階矩來(lái)近似信號(hào)到達(dá)最大值50%時(shí)的時(shí)延,而Rubinstein也是通過(guò)計(jì)算電路的一階矩估算時(shí)延的上下邊界來(lái)估算電路的時(shí)延,然而他們都是用來(lái)計(jì)算RC互連時(shí)延。傳輸管是非線性器件,所以沒(méi)有一個(gè)固定的電阻,這就造成了Elmore時(shí)延和Rubinstein時(shí)延模型的過(guò)于近似的估算,對(duì)整體評(píng)估FPGA的性能帶來(lái)負(fù)面因素。 本論文提出快速而精確的現(xiàn)場(chǎng)可編程門(mén)陣列FPGA中的互連資源MOS傳輸管時(shí)延模型。首先從階躍信號(hào)推導(dǎo)出適合50%時(shí)延的等效電阻模型,然后在斜坡輸入的時(shí)候,給出斜坡輸入時(shí)的時(shí)延模型,并且給出等效電容的計(jì)算方法。結(jié)果驗(yàn)證了我們精確的時(shí)延模型在時(shí)間上的開(kāi)銷少的性能。 在島型FPGA中,單個(gè)傳輸管能夠被用來(lái)作為互連線和互連線之間的連接,或者互連線和管腳之間的連接,如VPR把互連線和管腳作為布線資源,管腳只能單獨(dú)作為輸入或者輸出管腳,以致于它們不是一個(gè)線網(wǎng)的起點(diǎn)就是線網(wǎng)的終點(diǎn)。而這恰恰忽略了管腳實(shí)際在物理上可以作為互連線來(lái)使用的情況(VPR認(rèn)為dogleg現(xiàn)象本身對(duì)性能提高不多)。本論文通過(guò)對(duì)dogleg現(xiàn)象進(jìn)行了探索,并驗(yàn)證了在使用SUBSET開(kāi)關(guān)盒的情況下,dogleg能提高FPGA的布通率。
上傳時(shí)間: 2013-07-24
上傳用戶:yezhihao
數(shù)字超聲診斷設(shè)備在臨床診斷中應(yīng)用十分廣泛,研制全數(shù)字化的醫(yī)療儀器已成為趨勢(shì)。盡管很多超聲成像儀器設(shè)計(jì)制造中使用了數(shù)字化技術(shù),但是我們可以說(shuō)現(xiàn)代VLSI 和EDA 技術(shù)在其中并沒(méi)有得到充分有效的應(yīng)用。隨著現(xiàn)代電子信息技術(shù)的發(fā)展,PLD 在很多與B 型超聲成像或多普勒超聲成像有關(guān)的領(lǐng)域都得到了較好的應(yīng)用,例如數(shù)字通信和相控雷達(dá)領(lǐng)域。 在研究現(xiàn)代超聲成像原理的基礎(chǔ)上,我們首先介紹了常見(jiàn)的數(shù)字超聲成像儀器的基本結(jié)構(gòu)和模塊功能,同時(shí)也介紹了現(xiàn)代FPGA 和EDA 技術(shù)。隨后我們?cè)敿?xì)分析討論了B 超中,全數(shù)字化波束合成器的關(guān)鍵技術(shù)和實(shí)現(xiàn)手段。我們?cè)O(shè)計(jì)實(shí)現(xiàn)了片內(nèi)高速異步FIFO 以降低采樣率,仿真結(jié)果表明資源使用合理且訪問(wèn)時(shí)間很小。正交檢波方法既能給出灰度超聲成像所需要的回波的幅值信息,也能給出多普勒超聲成像所需要的回波的相移信息。我們?cè)O(shè)計(jì)實(shí)現(xiàn)了基于直接數(shù)字頻率合成原理的數(shù)控振蕩器,能夠給出一對(duì)幅值和相位較平衡的正交信號(hào),且在FPGA 片內(nèi)實(shí)現(xiàn)方案簡(jiǎn)單廉價(jià)。數(shù)控振蕩器輸出波形的頻率可動(dòng)態(tài)控制且精度較高,對(duì)于隨著超聲在人體組織深度上的穿透衰減,導(dǎo)致回波中心頻率下移的聲學(xué)物理現(xiàn)象,可視作將回波接收機(jī)的中心頻率同步動(dòng)態(tài)變化進(jìn)行補(bǔ)償。 還設(shè)計(jì)實(shí)現(xiàn)了B 型數(shù)字超聲診斷儀前端發(fā)射波束聚焦和掃描控制子系統(tǒng)。在單片F(xiàn)PGA 芯片內(nèi)部設(shè)計(jì)實(shí)現(xiàn)了聚焦延時(shí)、脈寬和重復(fù)頻率可動(dòng)態(tài)控制的發(fā)射驅(qū)動(dòng)脈沖產(chǎn)生器、線掃控制、探頭激勵(lì)控制、功能碼存儲(chǔ)等功能模塊,功能仿真和時(shí)序分析結(jié)果表明該子系統(tǒng)為設(shè)計(jì)實(shí)現(xiàn)高速度、高精度、高集成度的全數(shù)字化超聲診斷設(shè)備打下了良好的基礎(chǔ),將加快其研發(fā)和制造進(jìn)程,為生物醫(yī)學(xué)電子、醫(yī)療設(shè)備和超聲診斷等方面帶來(lái)新思路。
標(biāo)簽: 全數(shù)字 中的應(yīng)用 超聲診斷儀
上傳時(shí)間: 2013-05-30
上傳用戶:tonyshao
論文研究了基于Bayer格式的CCD原始圖像的顏色插值算法,并將設(shè)計(jì)的改進(jìn)算法應(yīng)用到以FPGA為核心的圖像采集前端。出于對(duì)成本和體積的考慮,一般的數(shù)字圖像采集系統(tǒng)采用單片CCD或CMOS圖像傳感器,然后在感光表面覆蓋一層顏色濾波陣列(CFA),經(jīng)過(guò)CFA后每個(gè)像素點(diǎn)只能獲得物理三基色(紅、綠、藍(lán))其中一種分量,形成馬賽克圖像。為了獲得全彩色圖像,就要利用周圍像素點(diǎn)的值近似地計(jì)算出被濾掉的顏色分量,稱這個(gè)過(guò)程為顏色插值。由于當(dāng)前對(duì)圖像采集系統(tǒng)的實(shí)時(shí)性要求越來(lái)越高,業(yè)內(nèi)已經(jīng)開(kāi)始廣泛采用FPGA來(lái)進(jìn)行圖像處理,充分發(fā)揮硬件并行運(yùn)算的速度優(yōu)勢(shì),以求在處理速度和成像質(zhì)量?jī)煞矫婢_(dá)到滿意的效果。。主要的工作內(nèi)容如下: 本文首先介紹了彩色濾波陣列、圖像色彩恢復(fù)和插值算法的概念,然后分析和研究了當(dāng)下常用的顏色插值算法,如雙線性插值算法、加權(quán)系數(shù)法等等,指出了各個(gè)算法的特點(diǎn)和不足;接下來(lái)針對(duì)硬件系統(tǒng)并行運(yùn)算的特性和實(shí)時(shí)性處理的要求,結(jié)合其中兩種算法的思路設(shè)計(jì)了適用于硬件的改進(jìn)算法,該算法主要引入了方向標(biāo)志位的概念以及平滑的邊界仲裁法則來(lái)檢測(cè)邊界,借鑒利用梯度的三角函數(shù)關(guān)系來(lái)判斷邊界方向,通過(guò)簡(jiǎn)化且適用于硬件的方法計(jì)算加權(quán)系數(shù),從而選擇合適的方向進(jìn)行插值。 在介紹了FPGA用于圖像處理的優(yōu)勢(shì)后,針對(duì)FPGA的特點(diǎn)采用模塊化結(jié)構(gòu)設(shè)計(jì),詳細(xì)闡述了本文算法的軟件實(shí)現(xiàn)過(guò)程及所使用到的關(guān)鍵技術(shù);文章設(shè)計(jì)了一個(gè)以FPGA為核心的前端圖像采集平臺(tái),并將改進(jìn)插值算法應(yīng)用到整個(gè)系統(tǒng)當(dāng)中。詳細(xì)分析了采集前端的硬件需求,討論了核心芯片的選型和硬件平臺(tái)設(shè)計(jì)中的注意事項(xiàng),完成了印制電路板的制作。 文章通過(guò)MATLAB仿真得到了量化的性能評(píng)估數(shù)據(jù),并選取幾種算法在硬件平臺(tái)上運(yùn)行,得到了實(shí)驗(yàn)圖片。最后結(jié)合圖片的視覺(jué)效果和仿真數(shù)據(jù)對(duì)幾種不同算法的效果進(jìn)行了評(píng)估和比較,證明改進(jìn)的算法對(duì)圖像質(zhì)量有所增強(qiáng),取得了良好的效果。
上傳時(shí)間: 2013-06-11
上傳用戶:it男一枚
蟲(chóng)蟲(chóng)下載站版權(quán)所有 京ICP備2021023401號(hào)-1