開關磁阻電機驅動系統(SRD)是一種新型交流驅動系統,以結構簡單、堅固耐用、成本低廉、控制參數多、控制方法靈活、可得到各種所需的機械特性,而備受矚目,應用日益廣泛.并且SRD在寬廣的調速范圍內均具有較高的效率,這一點是其它調速系統所不可比擬的.但開關磁阻電機(SRM)的振動與噪聲比較大,這影響了SRD在許多領域的應用.本文針對上述問題進行了研究,提出了一種新型齒極結構,可有效降低開關磁阻電機的振動與噪聲.通過電磁場有限元計算可看出,在新型齒極結構下,導致開關磁阻電機振動與噪聲的徑向力大為減小,尤其是當轉子極相對定子極位于關斷位置時,徑向力大幅度地減小,并改善了徑向力沿定子圓周的分布,使其波動減小,從而減小了定子鐵心的變形與振動,進而降低了開關磁阻電機的噪聲.靜態轉矩因轉子極開槽也略微減小,但對電機的效率影響不大.開關磁阻電機因磁路的飽和導致參數的非線性,又因在不同控制方式下是變結構的.這使得開關磁阻電機的控制非常困難.經典的線性控制方法如PI、PID等方法用于開關磁阻電機的控制,效果不好.其它的控制方法如滑模變結構控制、狀態空間控制方法等可取得較好的控制效果但大都比較復雜,實現起來比較困難.而智能控制方法如模糊控制本身為一種非線性控制方法,對于非線性、變結構、時變的被控對象均可取得較好的控制效果且不需知道被控對象的數學模型,這對于很難精確建模的開關磁阻電機來說尤其適用.同時,模糊控制實現比較容易.但對于變參數、變結構的開關磁阻電機來說固定參數的模糊控制在不同條件下其控制效果難以達到最優.為取得最優的控制效果,該文采用帶修正因子的自組織模糊控制器,采用單純形加速優化算法通過在線調整參數,達到了較好的控制效果.仿真結果證明了這一點.
上傳時間: 2013-05-16
上傳用戶:大三三
現場總線技術以其先進性、實用性、可靠性、開放性等優點,已經成為自動化技術發展的熱點。現場總線控制系統作為一種開放的、具可互操作性的、徹底分散的分布式控制系統,已經對傳統的PLC、集散控制系統形成了巨大的沖擊,具有廣闊的發展前景。 作為現場總線之一的CAN總線以其可靠性高、實時性好、價格低廉、容易實現等優點,被廣泛應用于工業控制領域。與傳統的控制系統相比,基于CAN總線設計的工業控制系統可以減少系統控制的復雜性,降低成本,并能提高系統的穩定性和擴展性。 本論文針對某石材加工廠的具體應用需求,在分析了CAN總線協議的基礎上,給出了工業控制網絡的總體解決方案,主控節點硬件設計、軟件設計,人機界面設計,以及網絡通訊結構模型及具體實現流程,完成的主要工作如下: 軟硬件平臺設計,基于ARM處理器LPC2378開發了工控網絡主控節點。設計了該節點的硬件電路,包括CAN總線接口電路、串行接口電路、AD、DA轉換隔離電路等。在硬件平臺上進行μC/OS-II操作系統移植,基于該操作系統編寫了各硬件模塊驅動程序,主要包括串行接口和CAN模塊的初始化、數據接收以及發送。 通訊設計,根據工業控制應用的具體需求,設計了網絡整體解決方案,包括網絡拓撲方案,通訊結構等,基于CAN總線技術規范CAN2.0B自定義了CAN總線網絡應用層通信協議CAN08。 人機界面設計,基于威綸MT505設計了工控網絡的人機界面,編程實現人機界面與主控節點的Modbus通訊。
上傳時間: 2013-07-09
上傳用戶:familiarsmile
比例-積分-微分(PID)是過程控制中最常用的一種控制算法。算法簡單而且容易理解,應用十分廣泛。但由于應用領域的不同,功能上差別很大,系統的控制要求及關心的控制對象也不相同。數字PID控制比連續PID控制更為優越,因為計算機程序的靈活性,很容易克服連續PID控制中存在的問題,經修正而得到更完善的數字PID算法。本文以三相全控整流橋阻性負載為實際電路,控制主電路電壓,旨在提出一種智能數字PID控制系統的設計思路,并給出了詳細的硬件設計及初步軟件設計思路。 PID控制系統采用高性能、低功耗的ARM微處理器S3C44BO作為核心處理單元,內部的10位ADC作為信號采集模塊,采用了矩陣鍵盤和640*480的液晶作為人機接口;串口作為通信模塊實現了上位機的監控。采用芯片內部自帶的PWM模塊,輸出16M Hz PWM信號并經過一階低通濾波器得到0~5V的控制信號用于觸發主電路控制器,實現PID整定。 軟件方面,分析和研究了uC/OSⅡ的內核源碼,實現了其在32位微處理器上的移植,作為管理各個子程序執行的系統軟件。選用了圖形處理軟件uC/GUI用于完成LCD顯示及控制。PID算法采用了增量式數字PID算法,采用規一化算法進行參數選取。上位機部分采用了C#語言進行編寫。另外,采用了RTC(Real Time Clock)作為系統時鐘,可以實現系統的定時運行、定時模式切換等。在上位機上也可以方便的控制程序的執行,實現遠程監控。 在論文的最后詳細的介紹了智能PID控制系統在三相全控橋主電路中的具體應用。總結了調試中遇到的問題,對今后工作中需要進一步改善和探索的地方進行了展望。
上傳時間: 2013-08-01
上傳用戶:lvzhr
本文深入研究了Nios 自定制指令的軟硬件接口,基于Altera 的IP 核FFT V2.2.0實現了變換長度為1024 點的高速復數FFT 算法,提出了一種在Nios 嵌入式系統中定制用戶FFT 算
上傳時間: 2013-04-24
上傳用戶:hfmm633
設計并實現具有硬件濾波空氣清新器的信息采集系統,根據空氣的復雜性以及隨機性,結合自適應濾波器的原理,提出一種新的空氣信息采集系統設計方法。該方法利用最小均方(LMS)自適應濾波器進行軟件濾波,針對空氣
上傳時間: 2013-06-14
上傳用戶:sjb555
瞬變電磁法作為一種重要的地球物理探測方法,由于它在時間和空間上的可分性,使得這種方法簡單易行,信息豐富,精度較高,低成本,見效快,從而在礦藏勘探、鉆井和海洋勘探等領域得到了廣泛的應用。隨著接收儀器的數字化和智能化,發射功率的增大,數字模型計算正反演的應用,解釋水平的提高,瞬變電磁法可解決的地質問題不斷擴大,幾乎涉及了物探工作的各個領域:礦產勘探,構造探測,水文與工程、地質調查,環境調查與監測以及考古等。近年來,在找水、市政工程、土壤鹽堿化和污染調查、淺層石油構造填圖,以及礦井突水預測等領域都取得了良好效果。 瞬變電磁法探測系統包括發射機和接收機兩部分。接收機用作在噪聲中提取由發射機發射的一次場信號在地下導體中感應出的二次場信息,其信息反映了地下導體的電阻率差異,通過對該信息數據的處理了解探測目標的特性從而達到探測的目的。 瞬變電磁信號具有早期信號幅度大、衰減快,而中晚期信號幅度小、衰減慢的大動態范圍的特點。因此,必須設計出能適應這種瞬時變化快、動態范圍大數據信號要求的高性能數據采集系統。同時,瞬變電磁探測系統的工作環境大都是在野外,因此,為適應野外工作的需要,數據采集卡尤其要有較低的功耗。 本論文在總結其他數據采集系統設計的基礎上,提高采樣速率和采樣精度、采用分段放大技術避免放大飽和和實現對小信號的有效識別、改用ARM作為核心處理器實現對接收機的有效控制、改進USB2.0的實際傳輸速度、改用自適應濾波法等噪聲抑制方法組合實現抗干擾和噪聲濾除設計,成功設計和實現了一套基于ARM和USB2.0的瞬變電磁數據采集系統,該系統具有高性能,低功耗,抗干擾能力強,低成本的特點,已成功應用于瞬變電磁探測實踐,并取得良好效果,極大的滿足了瞬變電磁探測系統的需要。同時,該系統對于其他數據采集系統的設計具有一定的借鑒意義。
上傳時間: 2013-06-21
上傳用戶:txfyddz
軌道電路是列車運行實現自動控制和遠程控制的基礎設備之一,鐵路信號系統是保證運輸安全的基礎設施,是實現鐵路統一指揮調度,保證列車運行安全、提高運輸效率和質量的關鍵技術設備,也是鐵路信息化的重要技術領域。 基于ARM與DSP的鐵路信號測試儀主要作用是及時測試鐵路信號狀況,反映鐵路運行的情況。開發此套系統是集測試25Hz相敏軌道電路的電壓自動記錄儀以及相位差監測儀、ZPW-2000A的載頻與低頻測試功能于一體,是性價比較高、功能齊全的監測管理系統,它發揮了ARM控制性好與DSP計算速度快的優勢,實現了互補。由于采用的主要是集成芯片,所以體積小,重量輕,功耗低和便于攜帶,便于現場檢測。在滿足要求的前提下,為降低開發成本提高可靠性,CPU采用LPC2210的ARM7芯片。為使測試儀直觀、操作簡便,系統提供了良好的人機界面,包括顯示,按鍵操作等。 論文對FFT以及相關算法進行了分析和Matlab仿真;論文中給出了時鐘電路、LCD電路、數據存儲器Flash、JTAG等各功能模塊的設計原理,完成了硬件電路設計;系統軟件設計遵循模塊化、自頂向下的設計思路。在軟件設計方面,首先采用的是傳統主循環控制方法,功能上主要實現了A/D采樣程序、LCD顯示程序、數據存儲程序等的設計,對兩路25Hz信號電壓相位差的計算,其誤差不人于1度。為了改善系統性能提高系統的實時性,系統中引入實時操作系統μC/OS-Ⅱ,也有利于代碼移植及系統功能擴展。
上傳時間: 2013-04-24
上傳用戶:隱界最新
文章介紹了一種在現場可編程門陣列(FPGA)上實現UART 的方法。UART 的波特率可設置調整,工作狀態可讀取。系統結構進行了模塊化分解,使之適應自頂向下(Top-Down)的設計方
上傳時間: 2013-04-24
上傳用戶:cjl42111
課題分析了目前國內外減搖鰭控制技術的發展與現狀,重點講述了基于ARM處理器的減搖鰭控制器的功能設計與實現方案。 減搖鰭是一種由微機控制的自動化程度很高的船舶減搖裝置。減搖鰭控制系統根據人為輸入的信號和來自鰭本身的反饋信號,及時輸出不同的控制指令,控制鰭轉動到期望的角度,達到減小船舶橫搖的目的。但目前大多數的減搖鰭控制器使用單片機作為主處理器或者以工控機為基礎開發而來的,前者集成度不高,穩定性也不好,而后者成本較高。因此,課題設計了一款新型的基于ARM嵌入式處理器的嵌入式減搖鰭控制器,解決了上述問題。 該系統主要由硬件平臺和軟件平臺兩部分組成。硬件平臺主要包括基于飛利浦公司的LPC2290的控制器核心電路和輔助實現控制的驅動電路;軟件平臺主要是基于ARM的軟件,包括啟動代碼和應用程序;為實現系統的可靠運行,同時也采取了一些保證系統可靠性的措施。 目前,減搖鰭系統大多采用基于力矩對抗原理的PID控制器。由于船舶橫搖運動的非線性、復雜性、時變性以及海況的不確定性,經典PID控制很難獲得令人滿意的控制效果。因此,如何實現PID參數的自整定就顯得猶為重要。模糊控制事先不需要獲知對象的精確數學模型,而是基于人類的思維以及經驗,用語言規則描述控制過程,并根據規則去調整控制算法或控制參數。本論文將模糊控制與PID控制相結合,實現了無須精確的對象模型,只須將操作人員和專家長期實踐積累的經驗知識用控制規則模型化,然后用模糊推理在線辨識對象特征參數,實時改變控制策略,便可對PID參數實現最佳調整。 研究結果表明:采用該控制手段能較好的滿足設計要求,開發的嵌入式減搖鰭控制系統具有設計合理、集成度高、性價比高、性能優越、抗干擾能力強、穩定性好、實時性高等優點。同時能夠適應減搖鰭控制系統智能化的發展趨勢,所以該減搖鰭控制器具有很好的使用價值及意義。
上傳時間: 2013-06-06
上傳用戶:mslj2008
智能控制器是智能斷路器的核心,不僅具有普通脫扣器的各種保護功能,而且還具有實時參數顯示、故障記憶和查詢、自診斷等多項功能。在回顧和總結了智能斷路器的發展歷程后,討論了當前智能斷路器的發展趨勢,提出了基于ARM的斷路器智能控制器的研究。本論文介紹了斷路器智能控制器的設計原理,同時重點闡述了斷路器智能控制器的各項參數測量及保護原理和算法,并進行了具體的硬件和軟件模塊的設計,旨在實現斷路器的智能保護。 本文涉及的斷路器智能控制器,在硬件上以PHILIPS公司的ARM芯片LPC2294為核心處理器,主要進行數據的實時采集處理和斷路器的故障保護。硬件設計采用了標準化模塊設計方法,硬件電路盡可能選擇標準化、模塊化結構的典型電路,以便擴展。其中,液晶選用的是SMG240128A,鍵盤芯片選用的是ZLG7290。軟件的編制采用模塊化編程方法,每一個模塊相對獨立,完成特定功能,便于維護添加新功能。編程工具為ARM公司提供的ADS1.2。為了保證智能控制器各種保護功能的可靠實現,論文中對智能控制器的干擾源進行了分析,從硬件和軟件兩個方面采取了多項設計措施,提高了智能控制器的穩定性和可靠性。實踐證明,論文中構建的斷路器智能控制器結構簡單,易于實現,可以滿足系統需要,因此具有較高的實用價值。
上傳時間: 2013-06-10
上傳用戶:yy307115118