直流電動機具有優良的調速特性,調速平滑、簡單,且范圍大.同時其過載能力大,能承受頻繁的沖擊負載,廣泛應用于切削機床、造紙機等高性能可控電力拖動領域. 以往直流調速系統控制器采用分立元件,其故障率高,穩定性差,技術落后,很難滿足生產的需要.隨著計算機技術及通信技術的發展,數字化直流調速系統克服了這一不足,成為直調系統的主流. 本文設計的系統以DSP為主控芯片,監控系統控制芯片使用P89C669單片機,通過上下位機的數據通訊,實現系統參數設計和調節的數字化.下面是具體工作闡述: 1.設計了電封閉直流調速系統的硬件和軟件,完成兩臺同軸電機的電封閉實驗. 2.主電路使用三菱公司的IPM-PS21867作為功率輸出模塊,同時設計了驅動保護電路、控制電路以及通信保護電路. 3.采用PWM控制方式,編寫了系統的軟件.主要包括主程序、通訊顯示程序以及中斷服務子程序. 4.完成了樣機的整體布局和調試,實現了系統的雙閉環控制. 5.針對由于負載、轉動慣量等的變化影響系統的調速性能,本文基于模型參考自適應控制原理,給出了雙閉環調速系統自適應的Narendra方案的具體實現,通過仿真驗證方案的可行性.
上傳時間: 2013-04-24
上傳用戶:kennyplds
高壓變頻調速技術節能效果顯著,多電平逆變器是其常用的一種電路拓撲形式。三電平逆變器能降低功率器件耐壓要求、降低諧波含量,普遍地采用電壓空間矢量脈寬調制的控制策略。將DSP數字控制技術應用于三電平逆變器不僅簡化了系統的硬件結構,提高系統性能,還可以實現系統的優化控制。 本文首先簡要介紹了三電平逆變器的拓撲結構和控制策略,并闡述了二極管箝位式三電平逆變器電路結構和電壓空間矢量脈寬調制控制策略的實現方法。在此基礎上,通過對逆變器的工作過程分析,建立了逆變器的數學模型。并提出了一種能控制逆變器直流側電容中點電位平衡并且能降低開關損耗的電壓空間矢量脈寬調制方法。 本文在綜述人工神經網絡技術的基礎上,提出一種基于復合人工神經網絡的電壓空間矢量脈寬調制算法,充分利用人工神經網絡的快速并行處理能力、學習能力,縮短了計算時間,降低了由控制延時引起的諧波成分。最后在MATIAB/Simulink環境下,結合ANN工具箱建立了仿真模型。仿真結果證明了基于復合人工神經網絡算法的可行性。 本文進行了三電平逆變器的主電路、開關器件驅動電路、電流電壓檢測電路和保護電路等的設計。根據三電平逆變器主電路功率開關多,驅動信號不能共地的特點,本文設計一種利用光耦隔離驅動功率開關器件的驅動保護電路,降低電磁干擾,并在過流等異常情況下實時保護功率開關器件。最后以TMS320LF2407DSP為數字控制平臺,實現了三電平逆變器的電壓空間矢量脈寬調制控制策略。
上傳時間: 2013-07-07
上傳用戶:natopsi
風能作為一種清潔可再生能源,發展迅速,已經成為世界新能源最主要的發展方向之一。本文以863計劃項目"MW級風力發電機組電控系統研制"為研究背景,介紹了1.2MW永磁同步電機變速恒頻風力發電系統,研究了變流系統中逆變器的控制方法。 本文首先對風力發電進行了概述,介紹了我國和世界風電發展狀況以及技術發展趨勢。當今風力發電技術,大功率直驅化和雙饋是兩個發展方向,本課題1.2MW風力發電系統就是采用了永磁同步電機加交直交變流系統的結構模式,中間省去了齒輪箱,減少了維護,具有較好的發展前景。 論文第二章首先對風輪機葉片的空氣動力特性進行了分析,介紹了不同風速下風力發電機的控制策略。就直驅技術與變速箱/感應電機技術--目前風力發電領域變速恒頻技術的兩大發展方向作了較為詳細的介紹分析。 在變流系統中,逆變并網是重要的環節,起到了將電能傳輸到電網的作用。文章中重點分析了三相并網逆變器的主電路結構、原理和工作方法,并進行了理論推導和公式說明。 本文對1.2MW永磁同步電機變速恒頻風力發電系統的主電路參數的選擇作了理論推導和計算,包括主電路直流側電容,網側電感,三重化升壓電感,網側濾波電容等,還確定了斬波和逆變部分所采用的開關管和六相整流所采用的二極管,并在額定正常工作情況下,分別計算斬波和逆變部分開關管的損耗和開關管的結溫。 本課題采用瞬時電流法對并網逆變器進行控制。在實驗中上確定了電壓外環和電流內環的PI參數,順利完成了閉環控制實驗。 文中采用DSP2407高速集成控制芯片是控制的核心,并根據控制流程圖對其控制進行了軟硬件設計,實現了控制板上的信號采集、運算、故障檢測、電路驅動等功能。并進行了小功率試驗,得到了較好的電壓電流波形,并對波形進行了詳細分析,驗證了本文采用方法的正確性。
上傳時間: 2013-07-06
上傳用戶:wangdean1101
近年來隨著用電設備對供電電源的性能和可靠性要求越來越高,不間斷供電系統(UPS)得到了廣泛應用。UPS模塊化并聯可實現大容量供電和冗余供電,是提高UPS容量和可靠性的一條重要途徑,因而被公認為當今逆變技術發展的重要方向之一。 本文主要致力于無輸出隔離變壓器的逆變器并聯系統環流特性及其并聯控制實現的研究。首先探討了基于電壓電流雙閉環控制的逆變器控制設計方法,在確定雙閉環控制逆變器閉環傳遞函數并了解其等效輸出阻抗特性的基礎上,建立了基于等效輸出阻抗的并聯系統模型分析其環流特性,并提出了一種新的基于有功功率和無功功率的逆變器并聯控制方案,包括:基準電壓相位和幅值的調整,PI控制參數設計,有功和無功功率計算,逆變輸出電壓同步鎖相等。此外本文還特別討論了雙閉環控制逆變器輸出電壓直流分量產生原因,提出了逆變器輸出電壓直流分量檢測與高精度數字調節方法,研究了雙閉環控制逆變器并聯系統直流環流產生原因及其檢測與抑制方法。最后通過實驗和實驗波形驗證本文所介紹的逆變器并聯控制方案的可行性。
上傳時間: 2013-04-24
上傳用戶:ljthhhhhh123
逆變控制器的發展經歷從分立元件的模擬電路到以專用微處理芯片(DSP/MCU)為核心的電路系統,并從數模混合電路過渡到純數字控制的歷程。但是,通用微處理芯片是為一般目的而設計,存在一定局限。為此,近幾年來逆變器專用控制芯片(ASIC)實現技術的研究越來越受到關注,已成為逆變控制器發展的新方向之一。本文利用一個成熟的單相電壓型PWM逆變器控制模型,圍繞逆變器專用控制芯片ASIC的實現技術,依次對專用芯片的系統功能劃分,硬件算法,全系統的硬件設計及優化,流水線操作和并行化,芯片運行穩定性等問題進行了初步研究。首先引述了單相電壓型PWM逆變器連續時間和離散時間的數學模型,以及基于極點配置的單相電壓型PWM逆變器電流內環電壓外環雙閉環控制系統的設計過程,同時給出了仿真結果,仿真表明此系統具有很好的動、靜態性能,并且具有自動限流功能,提高了系統的可靠性。緊接著分析了FPGA器件的特征和結構。在給出本芯片應用目標的基礎上,制定了FPGA目標器件的選擇原則和芯片的技術規格,完成了器件選型及相關的開發環境和工具的選取。然后系統闡述了復雜FPGA設計的設計方法學,詳細介紹了基于FPGA的ASIC設計流程,概要介紹了僅使用QuartusII的開發流程,以及Modelsim、SynplifyPro、QuartusII結合使用的開發流程。在此基礎上,進行了芯片系統功能劃分,針對:DDS標準正弦波發生器,電壓電流雙環控制算法單元,硬件PI算法單元,SPWM產生器,三角波發生器,死區控制器,數據流/控制流模塊等逆變器控制硬件算法/控制單元,研究了它們的硬件算法,完成了模塊化設計。分析了全數字鎖相環的結構和模型,以此為基礎,設計了一種應用于逆變器的,用比例積分方法替代傳統鎖相系統中的環路濾波,用相位累加器實現數控振蕩器(DCO)功能的高精度二階全數字鎖相環(DPLL)。分析了“流水線操作”等設計優化問題,并針對逆變器控制系統中,控制系統算法呈多層結構,且層與層之間還有數據流聯系,其執行順序和數據流的走向較為復雜,不利于直接采用流水線技術進行設計的特點,提出一種全新的“分層多級流水線”設計技術,有效地解決了復雜控制系統的流水線優化設計問題。本文最后對芯片運行穩定性等問題進行了初步研究。指出了設計中的“競爭冒險”和飽受困擾之苦的“亞穩態”問題,分析了產生機理,并給出了常用的解決措施。
上傳時間: 2013-05-28
上傳用戶:ice_qi
超聲波電機(Ultrasonic motors,簡稱USM)是一種全新原理的直接驅動電機,它利用壓電陶瓷逆壓電效應激發的超聲振動作為驅動力,通過定轉子間的摩擦力來驅動轉子運動。與傳統的電磁電機相比,它具有低速大轉矩、無電磁干擾、動作響應快、運行無噪聲、無輸入自鎖等卓越特性,在非連續運動領域、精密控制領域比傳統的電磁電機性能優越得多。超聲波電機在工業控制系統、汽車專用電器、精密儀器儀表、辦公自動化設備、智能機器人等領域有廣闊的應用前景,近年來倍受科技界和工業界的重視,成為當前機電控制領域的一個研究熱點。 本文主要以行波型超聲波電機的驅動控制技術為研究對象,引入嵌入式系統理念,設計并制作了超聲波電機的驅動控制系統,并對超聲波電機的速度與定位控制做了深入的研究。本文主要研究內容及成果如下: 介紹了超聲波電機的工作原理、特點及其應用前景,總結了國內外超聲波電機驅動控制技術的發展歷史和研究現狀,以及今后我國超聲波電機驅動控制技術的發展方向,明確了本文的研究內容。 結合嵌入式系統特點及其開發方法,詳細介紹了超聲波電機嵌入式驅動控制系統的硬件和軟件設計過程,并總結了硬件、軟件的調試過程。最后,對所設計系統性能進行了實驗測試和數據分析。 采用DDS技術解決超聲波電機所需要的高頻驅動電源和數字控制的問題。本文設計的以ARM控制器為核心,頻率、相位、幅值均可調的雙通道信號發生器,具有頻率和相位差控制精度高的特點。 本文介紹了速度與位置的常用控制策略。設計并搭建了基于增量式PID的速度和基于模糊PID的位置控制系統。速度控制采用增量式PID調節,其控制策略簡單、易行,通過實驗選擇合適的參數能適應一般的控制精度要求。定位控制則采用模糊PID控制策略,該策略將模糊控制不需要精確的數學模型、收斂速度快的特點與PID簡單易行、能消除穩態誤差的優點相結合,改善了模糊控制器穩態性能,使電機定位控制精度達到0.0880。
上傳時間: 2013-07-16
上傳用戶:wdq1111
永磁無刷直流電動機是一種性能優越、應用前景廣闊的電動機,傳統的理論分析及設計方法已比較成熟,它的進一步推廣應用,在很大程度上有賴于對控制策略的研究.該文提出了一套基于DSP的全數字無刷直流電動機模糊神經網絡雙模控制系統,將模糊控制和神經網絡分別引入到無刷直流電動機的控制中來.充分利用模糊控制對參數變化不敏感,能夠提高系統的快速性的特點,構造適用于調節較大速度偏差的模糊調節器,加快系統的調節速度;由于神經網絡既具有非線性映射的能力,可逼近任何線性和非線性模型,又具有自學習、自收斂性,對被控對象無須精確建模,對參數變化有較強的魯棒性的特點,構造三層BP神經網絡調節器,來實現消除穩態偏差的精確控制.以速度偏差率為判斷依據,實現模糊和神經網絡兩種控制模式的切換,使系統在不同速度偏差段快速調整、平滑運行.此外充分利用系統硬件構成的特點,采用適當的PWM輸出切換策略,最大限度的抑制逆變橋換相死區;通過換相瞬時轉矩公式推導和分析,得出在換相過程中保持導通相功率器件為恒通,即令PWM輸出占空比D=1,來抑制定子電感對換相電流影響的控制策略.上述抑制換相死區和采用恒通電壓的控制方法,減小了換相引起的轉矩波動,使系統電流保持平滑、轉矩脈動大幅度減小、系統響應更快、并具有較強的魯棒性和實時性.在這種設計下,系統不僅能實現更精確的定位和更準確的速度調節,而且可以使無刷直流電動機長期工作在低速、大轉矩、頻繁起動的狀態下.該文選用TMS320LF2407作為微控制器,將系統的參數自調整模糊控制算法,BP神經網絡控制算法以及PWM輸出,轉子位置、速度、相電流檢測計算等功能模塊編程存儲于DSP的E2PROM,實現了對無刷直流電動機的全數字實時控制,并得到了良好的實驗結果的結果.
上傳時間: 2013-06-01
上傳用戶:zl123!@#
開關磁阻電機驅動系統(SRD)是一種新型交流驅動系統,以結構簡單、堅固耐用、成本低廉、控制參數多、控制方法靈活、可得到各種所需的機械特性,而備受矚目,應用日益廣泛.并且SRD在寬廣的調速范圍內均具有較高的效率,這一點是其它調速系統所不可比擬的.但開關磁阻電機(SRM)的振動與噪聲比較大,這影響了SRD在許多領域的應用.本文針對上述問題進行了研究,提出了一種新型齒極結構,可有效降低開關磁阻電機的振動與噪聲.通過電磁場有限元計算可看出,在新型齒極結構下,導致開關磁阻電機振動與噪聲的徑向力大為減小,尤其是當轉子極相對定子極位于關斷位置時,徑向力大幅度地減小,并改善了徑向力沿定子圓周的分布,使其波動減小,從而減小了定子鐵心的變形與振動,進而降低了開關磁阻電機的噪聲.靜態轉矩因轉子極開槽也略微減小,但對電機的效率影響不大.開關磁阻電機因磁路的飽和導致參數的非線性,又因在不同控制方式下是變結構的.這使得開關磁阻電機的控制非常困難.經典的線性控制方法如PI、PID等方法用于開關磁阻電機的控制,效果不好.其它的控制方法如滑模變結構控制、狀態空間控制方法等可取得較好的控制效果但大都比較復雜,實現起來比較困難.而智能控制方法如模糊控制本身為一種非線性控制方法,對于非線性、變結構、時變的被控對象均可取得較好的控制效果且不需知道被控對象的數學模型,這對于很難精確建模的開關磁阻電機來說尤其適用.同時,模糊控制實現比較容易.但對于變參數、變結構的開關磁阻電機來說固定參數的模糊控制在不同條件下其控制效果難以達到最優.為取得最優的控制效果,該文采用帶修正因子的自組織模糊控制器,采用單純形加速優化算法通過在線調整參數,達到了較好的控制效果.仿真結果證明了這一點.
上傳時間: 2013-05-16
上傳用戶:大三三
超聲波電機是一種全新原理的直接驅動電機,它利用壓電陶瓷逆壓電效應激發的超聲振動作為驅動力,通過定轉子間的摩擦力來驅動轉子運動。與傳統的電磁電機相比,它具有低速大轉矩、無電磁干擾、動作相應快、運行無噪聲、無輸入自鎖等卓越特性,在非連續運動領域、精密控制領域要比傳統的電磁電機性能優越得多。超聲波電機在工業控制系統、汽車專用電器、精密儀器儀表、辦公自動化設備、智能機器人等領域有廣闊的應用前景,近年來倍受科技界和工業界的重視,成為當前機電控制領域的一個研究熱點。 本文主要研究了行波型超聲波電機的嵌入式驅動控制系統設計。系統是基于ARM嵌入式微控芯片設計的。全文共分為6部分。第一章主要介紹了國內外超聲波電機驅動控制技術在國內外的發展狀況,ARM芯片的結構原理以及本課題的選題意義。第二章在前人的研究基礎上做了系統仿真,為系統的硬件設計提供設計指導。第三章提出了基于ARM的超聲波電機嵌入式驅動控制系統設計方案,并介紹了系統各個模塊的設計與調試的過程和結果。第四章介紹了uC/OS-Ⅱ操作系統在ARM上的移植,以及基于該操作系統的電機控制系統軟件設計流程。第五章介紹了系統各子程序的設計,速度控制與定位控制的算法設計,以及系統調試的結果。第六章總結了本論文的主要貢獻、存在問題以及后續課題的研究方向。
上傳時間: 2013-04-24
上傳用戶:gpyz253344
逆變器在自動控制系統、電機交流調速、電力變換以及電力系統控制中都起著重要的作用;各系統對逆變器的性能需求也越來越高。PWM控制多重逆變器正是基于這些需求,實現可變頻、調壓、調相、低諧波、高穩定性的解決方案。 PWM控制逆變器通過對每個脈沖寬度進行控制,以達到控制輸出電壓和改善輸出波形的目的;多重逆變器則是把幾個矩形波逆變器的輸出組合起來起來形成階梯波,從而消除諧波;PWM控制多重逆變器綜合上述兩種技術的特點,非常適合于應用在對諧波、電壓輸出及穩定性要求比較高的場合。電力半導體技術和集成電路技術的快速發展,使得多重逆變器的控制、實現成為可能。 本文首先分析風力發電系統對逆變器的要求,從多重逆變器理論和PWM逆變器理論出發,提出同步式PWM控制電壓型串聯多重逆變器系統解決方案。本方案也可以應用在逆變電源、交流電機調速及電力變換領域中。 文中建立了一個多重逆變器的PWM控制算法模型。該算法可完成頻率、相位、幅值可調的多重逆變器的PWM控制,且能完成逆變器故障運行下的保護與告警。并在MATLAB/SIMULINK環境下對算法模型進行仿真與分析。 在比較了現有PWM發生解決方案的基礎上,本文提出了一個基于FPGA(可編程邏輯陣列)的多重逆變器PWM控制系統實現方案。并給出一個主要由FPGA、ADC/DAC、驅動與保護電路、逆變器主回路及其他外圍電路構成的多重逆變器系統解決方案。實驗結果表明,此方案系統結構簡單、可行,很好完成上述多重逆變器的PWM控制算法。
上傳時間: 2013-06-28
上傳用戶:wmwai1314