本文對PWM全橋軟開關直流變換器進行了研究。具體闡述了PWM全橋ZS軟開關直流變換器的工作原理和軟開關的實現條件,就基本的移相控制FB ZVS PWM變換器存在的問題給予分析并對兩種改進方案進行了研究:1、能在全部工作范圍內實現零電壓開關的改進型全橋移相zvs-PWM DCDC變換器,文中通過對其開關過程的分析,得出實現全負載范圍內零電壓開關的條件。采用改進方案設計了一臺48V~6 VDC/DC變換器,實驗結果證明其比基本的 ZVS-PWM變換器具有更好的軟開關性能。2、采用輔助網絡的全橋移相 ZVZCS-PWM DCDC變換器,文中具體分析了其工作原理及變換器特性,并進行實驗研究隨著電力電子技術的發展,功率變換器在開關電源、不間斷電源、CPU電源照明、電機驅動控制、感應加熱、電網的無功補償和諧波治理等眾多領域得到日益廣泛的應用,電力電子技術高頻化的發展趨勢使功率變換器的重量大大減輕體積大大減小,提高了產品的性能價格比,但采用傳統的硬開關技術,開關損耗將隨著開關頻率的提高而成正比地增加,限制了開關的高頻化提高功率開關器件本身的開關性能,可以減少開關損耗,另一方面,從變換器結構和控制上改善功率開關器件的開關性能,可以減少開關損耗。如緩沖技術、無損緩沖技術、軟開關技術等軟開關技術在減少功率開關器件的開關損耗方面效果比較好,理論上可使開關損耗減少為零。12軟開關技術的原理和類型功率變換器通常采用PwM技術來實現能量的轉換。硬開關技術在每次開關通斷期間功率器件突然通斷全部的負載電流,或者功率器件兩端電壓在開通時通過開關釋放能量,這種方式的工作狀況下必將造成比較大的開關損耗和開關應力,使開關頻率不能做得很高。軟開關技術是利用感性和容性元件的諧振原理,在導通前使功率開關器件兩端的電壓降為零,而關斷時先使功率開關器件中電流下降到零,實現功率開關器件的零損耗開通和關斷,并且減少開關應力。
標簽: 移相全橋
上傳時間: 2022-03-29
上傳用戶:jason_vip1
IC封裝前仿和后仿的PI/SI/EMC分析直流壓降-仿真直流壓降,電流密度分布,功率密度分布,電阻網絡2.電源完整性-分析電源分配系統的性能,評估不同的疊層,電容容值選擇和放置方法,最佳性價比優化去耦電容3.信號完整性一分析信號回流路徑的不連續性,分析串擾和SSN/SS0,分析信號延遲,畸變,抖動和眼圖4.電磁兼容一分析電磁干擾和輻射寬帶模型抽取-提取電源分配網絡的精確寬帶模型,信號和電源/地模型
標簽: sip
上傳時間: 2022-04-03
上傳用戶:qdxqdxqdxqdx
目前cPU+ Memory等系統集成的多芯片系統級封裝已經成為3DSiP(3 Dimension System in Package,三維系統級封裝)的主流,非常具有代表性和市場前景,SiP作為將不同種類的元件,通過不同技術,混載于同一封裝內的一種系統集成封裝形式,不僅可搭載不同類型的芯片,還可以實現系統的功能。然而,其封裝具有更高密度和更大的發熱密度和熱阻,對封裝技術具有更大的挑戰。因此,對SiP封裝的工藝流程和SiP封裝中的濕熱分布及它們對可靠性影響的研究有著十分重要的意義本課題是在數字電視(DTV)接收端子系統模塊設計的基礎上對CPU和DDR芯片進行芯片堆疊的SiP封裝。封裝形式選擇了適用于小型化的BGA封裝,結構上采用CPU和DDR兩芯片堆疊的3D結構,以引線鍵合的方式為互連,實現小型化系統級封裝。本文研究該SP封裝中芯片粘貼工藝及其可靠性,利用不導電膠將CPU和DDR芯片進行了堆疊貼片,分析總結了SiP封裝堆疊貼片工藝最為關鍵的是涂布材料不導電膠的體積和施加在芯片上作用力大小,對制成的樣品進行了高溫高濕試驗,分析濕氣對SiP封裝的可靠性的影響。論文利用有限元軟件 Abaqus對SiP封裝進行了建模,模型包括熱應力和濕氣擴散模型。模擬分析了封裝體在溫度循環條件下,受到的應力、應變、以及可能出現的失效形式:比較了相同的熱載荷條件下,改變塑封料、粘結層的材料屬性,如楊氏模量、熱膨脹系數以及芯片、粘結層的厚度等對封裝體應力應變的影響。并對封裝進行了濕氣吸附分析,研究了SiP封裝在85℃RH85%環境下吸濕5h、17h、55和168h后的相對濕度分布情況,還對SiP封裝在濕熱環境下可能產生的可靠性問題進行了實驗研究。在經過168小時濕氣預處理后,封裝外部的基板和模塑料基本上達到飽和。模擬結果表明濕應力同樣對封裝的可靠性會產生重要影響。實驗結果也證實了,SiP封裝在濕氣環境下引入的濕應力對可靠性有著重要影響。論文還利用有限元分析方法對超薄多芯片SiP封裝進行了建模,對其在溫度循環條件下的應力、應變以及可能的失效形式進行了分析。采用二水平正交試驗設計的方法研究四層芯片、四層粘結薄膜、塑封料等9個封裝組件的厚度變化對芯片上最大應力的影響,從而找到最主要的影響因子進行優化設計,最終得到更優化的四層芯片疊層SiP封裝結構。
標簽: sip封裝
上傳時間: 2022-04-08
上傳用戶:
TFT-LCD(Thin Film Transistor Liquid Crystal Display)即薄膜晶體管液晶顯示器,是微電子技術與液晶顯示器技術巧妙結合的的一種技術。CRT顯示器的工作原理是通電后燈絲發熱,陰極被激發后發射出電子流,電子流受到高電壓的金屬層的加速,經過透鏡聚焦形成極細的電子束打在熒光屏上,使熒光粉發光顯示圖像。LCD顯示器需要來自背后的光源,當光束通過這層液晶時,液晶會呈不規則扭轉形狀(形狀由TFT上的信號與電壓改變實現),所以液晶更像是一個個閘門,選擇光線穿透與否,這樣就可以在屏幕上看到深淺不一,錯落有致的圖像。目前主流的LCD顯示器都是TFT-LCD,是由原有液晶技術發展而來。TFT液晶為每個像素都設有一個半導體開關,以此做到完全的單獨控制一個像素點,液晶材料被夾在TFT陣列和彩色濾光片之間,通過改變刺激液晶的電壓值就可以控制最后出現的光線強度和色彩,
上傳時間: 2022-04-09
上傳用戶:
【作 者】(美)霍華德·約翰遜(Howard Johnson),(美)Martin Graham著;沈立等譯本教材結合了數字和模擬電路理論,對高速數字電路系統設計中的信號完整性和EMC方面的問題進行了討論和研究。書中詳細討論了涉及信號完整性方面的傳輸線、時鐘偏移和抖動、端接、過孔等問題。第1章 基礎知識 18 1.1 頻率與時間 18 1.2 時間與距離 21 1.3 集總與分布系統 22 1.4 關于3 dB和RMS頻率的解釋 24 1.5 4種類型的電抗 25 1.6 普通電容 26 1.7 普通電感 31 1.8 估算衰減時間的更好方法 35 1.9 互容 37 1.10 互感 40第2章 邏輯門電路的高速特性 47 2.1 一種年代久遠的數字技術的發展歷史 47 2.2 功率 31 2.3 速度 66 2.4 封裝 71第3章 測量技術 84第4章 傳輸線 123第5章 地平面和疊層 169第6章 端接 195第7章 通孔 214第8章 電源系統 225第9章 連接器 249第10章 扁平電纜 271第11章 時鐘分配 285第12章 時鐘振蕩器 304
標簽: 高速數字設計
上傳時間: 2022-04-16
上傳用戶:wangshoupeng199
文章針對800×600象素的 TFT LCD,介紹了LCD顯示原理、TFT元件特性、TFT-LCD的結構及驅動原理,重點進行了 TFT-LCD周邊驅動電路設計,包括柵(行)驅動電路和源〔列)驅動電路。柵驅動芯片,內部主要包括邏輯控制電路、雙向移位寄存器、電平位移電路和4-Level輸出電路。本文設計了一種多模式工作的柵驅動電路,其中控制電路包含左右移位控制、輸入輸出控制、分段清零、工作模式選擇,且相互之間必須進行互相配合。可根據應用場合的不同,而選擇不同的工作模式。列驅動芯片,首先分析其工作原理,并對內部兩個關鍵電路進行設計:并行輸入串行輸出電路和用于實現λ校正的DA變換電路。并采用兩種方式實現了DA轉換,一種是利用高低電壓組合;另一種是采用高低位譯碼電路來實現。在此基礎上,為了能夠降低列驅動芯片的功耗,對列驅動芯片的結構進行了改進,并對改進后的緩沖電路進行了設計,采用 Hspice對芯片內部的模塊電路進行仿真,仿真結果表明,所設計的驅動芯片基本能夠滿足所需的要求,并對柵驅動電路進行版圖設計關鍵詞:TFT LCD電平位移柵驅動列驅動科學技術的發展日新月異,顯示技術也在發生一場革命,隨著顯示技術的突破及市場需求的急劇增長,使得以液晶顯示(LCD)為代表的平板顯示(FPD)技術迅速崛起。目前競爭最激烈的平板顯示器有四個品種:場致發射平板顯示器(FED)、等離子體平板顯示器(PDP)、薄膜晶體管液晶平板顯示器(TFT-ICD)和有機電致發光顯示器(OLED)。而由于 TFT-LCD在亮度、對比度、功耗、壽命、體積和重量等方面的優勢,從而得到廣泛的關注和應用
上傳時間: 2022-04-22
上傳用戶:
支持在線安裝方式,永遠保持最新版本持常用的110-115200bps波特率,端口號、校驗位、數據位和停止位均可設置動檢測枚舉本機串口號,支持虛擬串口持設置分包參數(最大包長、分包時間),防止接收時數據粘包持ASCII/Hex發送,發送和接收的數據可以在16進制和AscII碼之間任意轉換,支持發送和顯示漢字接收數據能夠自動儲存到文檔支持系統日志接受方式:接受內容時自動顯示信息時間戳等基本信息支持隨意間距發送,循環系統發送接受和發送文本支持ANSI與UTF8二種編碼方式支持頁面對話框的背景圖及其字體樣式定制支持多個串口同時處理現在發布了V1.1.21版本了正在加入圖形分析研究的功能后續我會持續更新,同步推送
上傳時間: 2022-04-25
上傳用戶:
主要內容介紹 Allegro 如何載入 Netlist,進而認識新式轉法和舊式轉法有何不同及優缺點的分析,透過本章學習可以對 Allegro 和 Capture 之間的互動關係,同時也能體驗出 Allegro 和 Capture 同步變更屬性等強大功能。Netlist 是連接線路圖和 Allegro Layout 圖檔的橋樑。在這裏所介紹的 Netlist 資料的轉入動作只是針對由 Capture(線路圖部分)產生的 Netlist 轉入 Allegro(Layout部分)1. 在 OrCAD Capture 中設計好線路圖。2. 然後由 OrCAD Capture 產生 Netlist(annotate 是在進行線路圖根據第五步產生的資料進行編改)。 3. 把產生的 Netlist 轉入 Allegro(layout 工作系統)。 4. 在 Allegro 中進行 PCB 的 layout。 5. 把在 Allegro 中產生的 back annotate(Logic)轉出(在實際 layout 時可能對原有的 Netlist 有改動過),並轉入 OrCAD Capture 裏進行回編。
上傳時間: 2022-04-28
上傳用戶:kingwide
本設計的目的是制作一個簡易紙張計數顯示裝置,該裝置以 STM32 單片機為核心處理器,以 FDC2214 作為電容感應傳感器,利用兩塊銅制金屬板作為紙張數量變化的感應器,輔以 VGUS 串口組態屏作為人機交互模塊,實現精確測量紙張數目的功能。當改變紙張數量時,電容傳感器感應到的電容值會有所改變,將所得到的數據送入 STM32 單片機進行處理并自校準,通過結合查表法與函數擬合法,可計算出準確的紙張數量,且穩定性極高。
標簽: 紙張計數
上傳時間: 2022-04-28
上傳用戶:XuVshu
part1也已上傳:https://dl.21ic.com/download/part1-385449.html 本書系統介紹電容器的基礎知識及在各種實際應用電路中的工作原理,包括 RC 積分、 RC 微分、濾波電容、旁路電容、去耦電容、耦合電容、諧振電容、自舉電容、 PN 結電容、加速電容、密勒電容、安規電容等。本書強調工程應用,包含大量實際工作中的應用電路案例講解,涉及高速 PCB、高頻電子、運算放大器、功率放大、開關電源等多個領域,內容豐富實用,敘述條理清晰,對工程師系統掌握電容器的實際應用有很大的幫助,可作為初學者的輔助學習教材,也可作為工程師進行電路設計、制作與調試的參考書。第 1 章 電容器基礎知識第 2 章 電容器標稱容值為什么這么怪第 3 章 電容器為什么能夠儲能第 4 章 介電常數是如何提升電容量的第 5 章 介質材料是如何損耗能量的第 6 章 絕緣電阻與介電常數的關系第 7 章 電容器的失效模式第 8 章 RC 積分電路的復位應用第 9 章 門電路組成的積分型單穩態觸發器第 10 章 555 定時芯片應用:單穩態負邊沿觸發器第 11 章 RC 多諧振蕩器電路工作原理第 12 章 這個微分電路是冒牌的嗎第 13 章 門電路組成的微分型單穩態觸發器第 14 章 555 定時器芯片應用:單穩態正邊沿觸發器第 15 章 電容器的放電特性及其應用第 16 章 施密特觸發器構成的多諧振蕩器第 17 章 電容器的串聯及其應用第 18 章 電容器的并聯及其應用第 19 章 電源濾波電路基本原理第 20 章 從低通濾波器認識電源濾波電路第 21 章 從電容充放電認識低通濾波器第 22 章 降壓式開關電源中的電容器第 23 章 電源濾波電容的容量越大越好嗎第 24 章 電源濾波電容的容量多大才合適第 25 章 RC 滯后型移相式振蕩電路第 26 章 電源濾波電容中的戰斗機:鋁電解電容第 27 章 旁路電容工作原理(數字電路)第 28 章 旁路電容 0.1μF 的由來(1)第 29 章 旁路電容 0 1μF 的由來(2)第 30 章 旁路電容的 PCB 布局布線第 31 章 PCB 平面層電容可以做旁路電容嗎第 32 章 旁路電容工作原理(模擬電路)第 33 章 旁路電容與去耦電容的聯系與區別第 34 章 旁路電容中的戰斗機:陶瓷電容第 35 章 交流信號是如何通過耦合電容的第 36 章 為什么使用電容進行信號的耦合第 37 章 耦合電容的容量多大才合適
標簽: 電容
上傳時間: 2022-05-07
上傳用戶: