該文檔為單片機(jī)定時(shí)器中斷原理和C語言代碼詳解總結(jié)文檔,是一份不錯(cuò)的參考資料,感興趣的可以下載看看,,,,,,,,,,,,,,,,,
標(biāo)簽: 單片機(jī)
上傳時(shí)間: 2022-08-10
上傳用戶:d1997wayne
隨著新型電力電子器件的不斷涌現(xiàn)和計(jì)算技術(shù)的不斷發(fā)展,高性能的異步電動(dòng)機(jī)調(diào)速系統(tǒng)得到了廣泛的應(yīng)用.而高壓變頻調(diào)速是近幾年剛剛開始應(yīng)用的一種高新技術(shù),不僅解決了大功率風(fēng)機(jī)、水泵的軟起動(dòng)和調(diào)速問題,而且節(jié)能顯著,具有較大的應(yīng)用市場和廣闊的發(fā)展空間.該文首先對高壓變頻調(diào)速存在的對電網(wǎng)、電機(jī)和用電設(shè)備產(chǎn)生電磁污染的問題進(jìn)行認(rèn)真的分析,并針對高壓變頻調(diào)速系統(tǒng)存在的問題,根據(jù)增加電壓矢量種類,能降低高壓交流電輸出諧波的原理,采用了功率單元串聯(lián)的方法,設(shè)計(jì)出一種適用于風(fēng)機(jī)和水泵調(diào)速的新型拓?fù)浣Y(jié)構(gòu)的高壓變頻器,供給普通異步電動(dòng)機(jī)做調(diào)速驅(qū)動(dòng).測試結(jié)果表明,這種新型變頻器的輸出電壓波形符合實(shí)際的要求,解決了由于高壓變頻調(diào)速由于輸出諧波引起的電磁污染問題.該變頻器的拓?fù)浣Y(jié)構(gòu)復(fù)雜,主控制器的計(jì)算繁瑣、數(shù)據(jù)傳輸量大和控制難度高.為了得到良好的控制性能,該文結(jié)合同類產(chǎn)品,設(shè)計(jì)出以雙DSP(TM320F240)為核心的主控制器和系統(tǒng)總控制結(jié)構(gòu),同時(shí)給出了控制系統(tǒng)的軟件流程圖.最后,舉例說明功率單元串聯(lián)的新型高壓變頻器在風(fēng)機(jī)上應(yīng)用,論證了該高壓變頻調(diào)速系統(tǒng)的經(jīng)濟(jì)效益和社會(huì)效益以及廣闊的應(yīng)用前景.
標(biāo)簽: 串聯(lián) 高壓變頻器
上傳時(shí)間: 2013-07-26
上傳用戶:buffer
本文首先分析了雙電源自動(dòng)轉(zhuǎn)換器的現(xiàn)狀和發(fā)展趨勢,然后具體闡述了所設(shè)計(jì)的雙電源自動(dòng)轉(zhuǎn)換裝置的硬件、軟件系統(tǒng)的原理與設(shè)計(jì)方法,最后對雙電源自動(dòng)轉(zhuǎn)換器的抗干擾性進(jìn)行了研究,給出了一些可行的軟硬件抗干擾措施,為整個(gè)系統(tǒng)的可靠穩(wěn)定工作提供了保障。 雙電源自動(dòng)轉(zhuǎn)換器(ATSE)是一種廣泛應(yīng)用于工礦企業(yè)、交通、醫(yī)院等重要部門以提高供電可靠性的裝置。現(xiàn)代雙電源自動(dòng)轉(zhuǎn)換器是以CPU 為核心單元,具有自動(dòng)檢測自身故障、自動(dòng)測量、自動(dòng)控制、與遠(yuǎn)方控制中心通信等功能的智能電器。隨著我國工業(yè)的發(fā)展、自動(dòng)化程度的普及、人類生活質(zhì)量的不斷改善,人們對電源可靠性的要求越來越迫切,由此雙電源轉(zhuǎn)換器的重要性日益提高。 本文選取了微控制器(PIC18F458)、軟件開發(fā)工具(MPLAB C18)和性能可靠、抗干擾性強(qiáng)的硬件器件,設(shè)計(jì)了滿足轉(zhuǎn)換系統(tǒng)功能要求的硬件電路,其中主要包括系統(tǒng)單元電路、信號檢測處理電路、輸出控制電路以及人機(jī)交互的硬件電路。利用C 語言和匯編語言編制了控制軟件,并且采用了模塊化的設(shè)計(jì)方法,主要功能模塊包括:頻率檢測模塊,電壓檢測模塊,按鍵檢測模塊,顯示模塊,通信模塊等。 借助MPLAB-IDE 集成開發(fā)環(huán)境軟件包來進(jìn)行編程、離線仿真,與在線調(diào)試器配合使用進(jìn)行在線調(diào)試、編程及程序下載。這使得該裝置的設(shè)計(jì)開發(fā)變得更容易。
標(biāo)簽: 雙電源 自動(dòng) 轉(zhuǎn)換器
上傳時(shí)間: 2013-04-24
上傳用戶:zsjinju
隨著電力電子技術(shù)、微處理器技術(shù)以及新的電機(jī)控制技術(shù)的發(fā)展,交流調(diào)速性能日益提高。變頻調(diào)速技術(shù)的出現(xiàn)使交流調(diào)速系統(tǒng)有取代直流調(diào)速系統(tǒng)的趨勢。但是國民經(jīng)濟(jì)的快速發(fā)展要求交流變頻調(diào)速系統(tǒng)具有更高的調(diào)速精度、更大的調(diào)速范圍和更快的響應(yīng)速度,一般的通用變頻器已經(jīng)不能滿足工業(yè)應(yīng)用的需求,而交流電機(jī)矢量控制調(diào)速系統(tǒng)能夠很好的滿足這個(gè)要求。矢量控制(Field Oriented Control),能夠?qū)崿F(xiàn)交流電機(jī)電磁轉(zhuǎn)矩的快速控制,本文對三相交流異步電機(jī)的矢量控制系統(tǒng)進(jìn)行了研究和分析,以高性能數(shù)字信號處理器為硬件平臺(tái)設(shè)計(jì)了基于DSP的三相交流異步電機(jī)的矢量控制系統(tǒng),并分析了逆變器死區(qū)效應(yīng)的產(chǎn)生,實(shí)現(xiàn)了逆變器死區(qū)的補(bǔ)償。 本文介紹了交流調(diào)速及其相關(guān)技術(shù)的發(fā)展,變頻調(diào)速的方案以及國內(nèi)外對矢量控制的研究狀況。以三相交流異步電機(jī)在三相靜止坐標(biāo)系下的數(shù)學(xué)模型為基礎(chǔ),通過Clarke變換和Parke變換得到三相交流異步電機(jī)在兩相旋轉(zhuǎn)坐標(biāo)系下的數(shù)學(xué)模型,并利用轉(zhuǎn)子磁場定向的方法,對該模型進(jìn)行分析,設(shè)計(jì)了轉(zhuǎn)子磁鏈觀測器,以實(shí)現(xiàn)交流電機(jī)電流量的有效解耦,得到定子電流的轉(zhuǎn)矩分量和勵(lì)磁分量。仿照直流電機(jī)的控制方法,設(shè)計(jì)了矢量控制算法的電流與速度雙閉環(huán)控制系統(tǒng)。設(shè)計(jì)了以TMS320LF2407A為主控制器的硬件平臺(tái),在此基礎(chǔ)上實(shí)現(xiàn)了矢量控制算法,論述了電壓空間矢量調(diào)制(SVPWM)的原理和方法,并對其進(jìn)行了改進(jìn)。最后對逆變器的死區(qū)進(jìn)行了補(bǔ)償。 實(shí)驗(yàn)表明基于轉(zhuǎn)子磁場定向的矢量控制(FOC)系統(tǒng),結(jié)構(gòu)簡單,電流解耦方便,動(dòng)態(tài)性能好,精度較高,能夠基本滿足現(xiàn)代交流電機(jī)控制系統(tǒng)的轉(zhuǎn)矩和速度要求。
標(biāo)簽: DSP 三相交流 異步電機(jī)
上傳時(shí)間: 2013-05-24
上傳用戶:李彥東
本文的主要工作是設(shè)計(jì)與開發(fā)了用于機(jī)床主軸直接驅(qū)動(dòng)的全數(shù)字化永磁同步電動(dòng)機(jī)矢量控制系統(tǒng)的軟硬件平臺(tái),并利用該平臺(tái)進(jìn)行了仿真和實(shí)驗(yàn)研究,仿真和實(shí)驗(yàn)結(jié)果驗(yàn)證了該系統(tǒng)設(shè)計(jì)方案的可行性。 首先,詳細(xì)闡述了坐標(biāo)變換理論,根據(jù)永磁同步電動(dòng)機(jī)的本體結(jié)構(gòu)推導(dǎo)了其在各坐標(biāo)系下的數(shù)學(xué)模型,深入研究了永磁同步電動(dòng)機(jī)的矢量控制原理和id=0控制策略,此外對空間電壓矢量脈寬調(diào)制(SVPWM)的基本原理和特性進(jìn)行了研究。 其次,采用MATLAB軟件建立了電機(jī)系統(tǒng)的仿真模型。整個(gè)仿真系統(tǒng)包括PMSM模塊、Power Module模塊、測量模塊、坐標(biāo)變換模塊、電流、轉(zhuǎn)速調(diào)節(jié)模塊和SVPWM模塊等。仿真結(jié)果驗(yàn)證了矢量控制和SVPWM技術(shù)應(yīng)用于本系統(tǒng)的可行性,同時(shí)為系統(tǒng)平臺(tái)設(shè)計(jì)提供了理論依據(jù)。 再次,為了提高系統(tǒng)的動(dòng)靜態(tài)特性和減小轉(zhuǎn)動(dòng)脈動(dòng),采用DSP TMS320F2812為核心進(jìn)行了永磁同步電動(dòng)機(jī)全數(shù)字矢量控制系統(tǒng)的軟硬件設(shè)計(jì)。系統(tǒng)硬件包括電流檢測、速度檢測、顯示電路、驅(qū)動(dòng)電路、主電路和系統(tǒng)保護(hù)電路等;系統(tǒng)軟件由DSP編程實(shí)現(xiàn),采用基于id=0的轉(zhuǎn)子磁場定向矢量控制方法,完成對永磁同步電動(dòng)機(jī)的解耦控制。速度調(diào)節(jié)器和電流調(diào)節(jié)器采用常規(guī)PI控制算法,逆變器采用SVPWM控制策略。同時(shí),給出了系統(tǒng)各模塊的軟件流程圖,包括系統(tǒng)初始化程序、速度和電流調(diào)節(jié)程序、SVPWM的實(shí)現(xiàn)以及功率驅(qū)動(dòng)保護(hù)等子程序等。 最后,在實(shí)驗(yàn)平臺(tái)上做了大量深入的實(shí)驗(yàn)研究工作,并對試驗(yàn)波形做了深入分析。結(jié)果表明,該系統(tǒng)具有能夠響應(yīng)速度快,低轉(zhuǎn)速運(yùn)行平穩(wěn)和抗干擾能力強(qiáng)等優(yōu)點(diǎn),可以滿足主軸直接驅(qū)動(dòng)要求。
標(biāo)簽: F2812 2812 320F TMS
上傳時(shí)間: 2013-05-18
上傳用戶:lwwhust
本論文主要針對燃料電池電動(dòng)轎車FCEV(Fuel Cell Electrical Vehicle)用DC/DC變換器主電路拓?fù)浣Y(jié)構(gòu)及電磁干擾產(chǎn)生與抑制問題進(jìn)行研究.針對燃料電池偏軟的輸出特性和電動(dòng)汽車對DC/DC變換器的體積小、重量輕和效率高的要求,本論文分析比較了帶變壓器的隔離式直流變換器和非隔離式直流變換器的主要優(yōu)點(diǎn)和缺點(diǎn),指出隔離式變換電路不適合于FCEV用DC/DC變換器主電路,非隔離式降壓(Buck)電路是最佳的主電路方案.在此基礎(chǔ)上,分析了非隔離式降壓(Buck)電路的工作原理和特點(diǎn),運(yùn)用模擬仿真軟件PSPICE仿真分析了Buck主電路參數(shù),并在分析比較了各種磁性材料特性的基礎(chǔ)上對電感器進(jìn)行了優(yōu)化設(shè)計(jì).本論文深入討論了DC/DC變換器中構(gòu)成電磁干擾的三個(gè)主要因素:電磁干擾源、傳播途徑和敏感設(shè)備.分析了DC/DC變換器主電路中存在的主要干擾源及干擾產(chǎn)生的機(jī)理以及干擾傳播途徑,在此基礎(chǔ)上,重點(diǎn)討論了抑制各種干擾的方法及措施(包括傳導(dǎo)干擾抑制與輻射干擾抑制等),并給出了具體方案.本論文還從電磁兼容(EMC)測試的目的、組成等方面出發(fā),對整個(gè)EMC測試進(jìn)行了詳細(xì)的分析,提出了基于汽車電子EMC測試標(biāo)準(zhǔn)的DC/DC變換器EMC測試大綱,并對其中的試驗(yàn)項(xiàng)目、試驗(yàn)儀器、試驗(yàn)場地、試驗(yàn)設(shè)置、所應(yīng)達(dá)到的等級進(jìn)行了詳細(xì)的分析和介紹.
標(biāo)簽: DCDC 電動(dòng)汽車 變換器
上傳時(shí)間: 2013-08-03
上傳用戶:20160811
本文的研究工作主要是圍繞著變速恒頻雙饋風(fēng)力發(fā)電機(jī)交流勵(lì)磁電源研究展開的.根據(jù)變速恒頻雙饋風(fēng)力發(fā)電系統(tǒng)對交流勵(lì)磁電源的要求,本文首先對目前適合用作交流勵(lì)磁電源的六種變換器進(jìn)行了詳細(xì)深入地比較分析,認(rèn)為在目前的電力電子技術(shù)條件下,兩電平電壓型雙PWM變換器是可用作變速恒頻雙饋風(fēng)力發(fā)電機(jī)交流勵(lì)磁電源的最具優(yōu)勢的一種變換器,而多電平與軟開關(guān)技術(shù)的結(jié)合將是交流勵(lì)磁電源的發(fā)展方向.對網(wǎng)側(cè)PWM變換器的無電網(wǎng)電壓傳感器控制技術(shù)進(jìn)行了研究,提出了一種基于虛擬電網(wǎng)磁鏈定向的無電網(wǎng)電壓傳感器的矢量控制方案,解決了初始虛擬電網(wǎng)磁鏈準(zhǔn)確觀測的難點(diǎn),使網(wǎng)側(cè)PWM變換器不用對電網(wǎng)電壓進(jìn)行采樣即可實(shí)現(xiàn)矢量控制,省去了電網(wǎng)電壓傳感器及其處理電路但并不影響其控制性能,仿真和實(shí)驗(yàn)結(jié)果驗(yàn)證了所提出方案的良好控制性能.在轉(zhuǎn)子側(cè)PWM變換器的研究中,在電網(wǎng)電壓恒定的情況下對DFIG矢量形式的數(shù)學(xué)模型進(jìn)行簡化,進(jìn)行了基于定子磁鏈定向和基于定子電壓定向的轉(zhuǎn)子電流環(huán)控制器的設(shè)計(jì)研究.深入分析了DFIG風(fēng)力發(fā)電系統(tǒng)最大風(fēng)能追蹤的機(jī)理和實(shí)現(xiàn)的方案,設(shè)計(jì)了基于定子電壓定向矢量控制、實(shí)現(xiàn)最大風(fēng)能追蹤、有功和無功功率解耦的DFIG的控制方案.最后,將變速恒頻雙饋風(fēng)力發(fā)電運(yùn)行研究拓展到了電網(wǎng)故障條件下的運(yùn)行控制.建立了計(jì)及電網(wǎng)電壓故障的變速恒頻雙饋風(fēng)力發(fā)電系統(tǒng)完整仿真模型,為系統(tǒng)不間斷運(yùn)行的研究、改進(jìn)控制策略的驗(yàn)證和其它探索性研究提供了一個(gè)很好的平臺(tái).
標(biāo)簽: 變速恒頻 雙饋 交流
上傳時(shí)間: 2013-06-17
上傳用戶:heart520beat
隔離升壓DC-DC變換器在電動(dòng)汽車、儲(chǔ)能系統(tǒng)、可再生能源發(fā)電以及超導(dǎo)儲(chǔ)能系統(tǒng)等領(lǐng)域有廣闊的應(yīng)用前景。本文以隔離升壓全橋變換器(Isolated Boost Full Bridge Converter,簡稱IBFBC)為研究對象,針對隔離升壓型變換器的拓?fù)浣Y(jié)構(gòu)、起動(dòng)問題、隔離變壓器漏感問題、軟開關(guān)問題和輸入電感磁復(fù)位問題等進(jìn)行了系統(tǒng)深入的研究,解決了這一類拓?fù)渌灿屑夹g(shù)問題。 提出了隔離升壓DC-DC變換器拓?fù)渥澹治霰容^了各種拓?fù)涞奶攸c(diǎn),確定了以IBFBC為研究對象。對IBFBC進(jìn)行了詳細(xì)的穩(wěn)態(tài)分析和小信號建模分析,為其分析、設(shè)計(jì)和搭建實(shí)驗(yàn)平臺(tái)提供了電路理論基礎(chǔ)。 理論上分析了IBFBC起動(dòng)時(shí)存在電流沖擊的原因。提出了二種數(shù)字化軟起動(dòng)方案,該方案對主電路進(jìn)行了改造,利用DSP能靈活產(chǎn)生PWM波的特點(diǎn)采用了新的控制策略,成功實(shí)現(xiàn)了該系統(tǒng)的軟起動(dòng)。 理論上分析了IBFBC隔離變壓器漏感引起功率開關(guān)管關(guān)斷電壓尖峰的原因,采用了有源箝位的方法,有效的解決電壓尖峰問題。提出了帶有源箝位IBFBC的九種PWM控制策略,提出了一種控制型軟PWM方法,在不增加主電路元器件的基礎(chǔ)上,通過控制PWM的發(fā)生方法,實(shí)現(xiàn)了有源箝位功率開關(guān)管和橋臂功率開關(guān)管的零電壓開通。 從理論上分析了IBFBC輸入電感磁復(fù)位問題。在正常停機(jī)時(shí)提出了一種數(shù)字化軟停止的方法,控制變換器由Boost工作狀態(tài)逐漸過渡到Buck工作狀態(tài),讓輸入電感存儲(chǔ)的能量逐漸釋放掉,最后停止工作。對于故障保護(hù)停機(jī),采用了繞組磁復(fù)位的方法,把輸入電感設(shè)計(jì)成反激式變換器形式,突然停機(jī)時(shí),電感中存儲(chǔ)的能量通過反激式繞組釋放到輸出端,這樣保護(hù)了變換器不會(huì)損壞。 給出了主電路關(guān)鍵器件參數(shù)的設(shè)計(jì)方法,設(shè)計(jì)了以DSP-TMS320F2407為核心的數(shù)字控制單元,編寫了DSP控制程序和CPLD邏輯處理程序。研制了一臺(tái)輸出功率5KW,輸入電壓直流24V,輸出電壓直流300V的IBFBC,通過全面的性能實(shí)驗(yàn)驗(yàn)證了理論分析和仿真結(jié)果。 本文立足于IBFBC的關(guān)鍵技術(shù)要求,并充分考慮工程應(yīng)用中的實(shí)際因素,進(jìn)行了理論分析和實(shí)驗(yàn)研究,為實(shí)際系統(tǒng)方案設(shè)計(jì)提供理論依據(jù),并已經(jīng)在實(shí)際應(yīng)用中得到驗(yàn)證。
標(biāo)簽: DCDC 隔離 升壓
上傳用戶:lifevast
近年來,隨著汽車工業(yè)的迅速發(fā)展,環(huán)境污染、全球變暖、能源短缺的壓力使傳統(tǒng)的內(nèi)燃機(jī)汽車面臨前所未有的挑戰(zhàn),燃料電池電動(dòng)汽車已成為汽車工業(yè)新的熱點(diǎn)。由于燃料電池輸出特性的特殊性,輸出端必須連接DC/DC變換器,使之與驅(qū)動(dòng)器配合。因此,DC/DC變換器是燃料電池電動(dòng)汽車的關(guān)鍵零部件之一。 本論文主要對燃料電池電動(dòng)轎車FCEV(Fuel Cell Electric Vehicle)用DC/DC變換器的主電路拓?fù)浣Y(jié)構(gòu)、參數(shù)設(shè)計(jì)及電磁兼容(EMC)問題進(jìn)行了研究。重點(diǎn)針對升降壓和雙向DC/DC變換器進(jìn)行分析研究。 首先介紹分析了幾種傳統(tǒng)升降壓直流變換器的工作原理和優(yōu)缺點(diǎn)。針對燃料電池的特性和電動(dòng)汽車對升降壓DC/DC變換器的性能指標(biāo)要求,分析比較了非隔離式直流變換器的一些優(yōu)點(diǎn)和缺點(diǎn),提出了Buck-Boost級聯(lián)的升降壓主電路方案并提出相關(guān)的控制策略。然后運(yùn)用模擬仿真軟件MATLAB仿真分析了控制策略的正確性。 其次分析研究了雙向DC/DC變換器的應(yīng)用與設(shè)計(jì),綜合比較現(xiàn)有的各種隔離與非隔離方案,結(jié)合車用要求,選擇了非隔離式的Buck-Boost拓?fù)洹a槍ζ涔ぷ髟怼⑻攸c(diǎn)進(jìn)行了雙向DC/DC變換器主電路與控制電路的設(shè)計(jì)研究,重點(diǎn)研究其過渡過程的控制策略。在利用MATLAB進(jìn)行各種過渡過程的仿真分析的基礎(chǔ)上,選取了最佳的過渡控制方案。并利用該控制策略編制DSP控制程序,制作了小功率1kW數(shù)字控制雙向DC/DC變換器。 最后深入討論了DC/DC變換器中的電磁兼容問題。分析了DC/DC變換器主電路中存在的主要干擾源、干擾產(chǎn)生的機(jī)理以及干擾傳播途徑,然后以此出發(fā),重點(diǎn)討論了各種抑制電磁騷擾(EMI)和電磁抗干擾(EMS)的方法及措施,給出具體方案。
標(biāo)簽: DCDC 車用 變換器
上傳用戶:hanli8870
隨著電力電子技術(shù)、微處理器技術(shù)以及控制技術(shù)的發(fā)展,基于轉(zhuǎn)子磁鏈定向的交流電機(jī)矢量控制系統(tǒng)以其優(yōu)良的性能受到了廣泛應(yīng)用。采用SVPWM逆變器的異步電動(dòng)機(jī)矢量控制系統(tǒng)在轉(zhuǎn)速參考值變化或者負(fù)載轉(zhuǎn)矩參考值變化的動(dòng)態(tài)情況下,參考電壓矢量可能會(huì)超出基本空間矢量構(gòu)成的正六邊形,此時(shí)便出現(xiàn)動(dòng)態(tài)過調(diào)制,需要用過調(diào)制策略將超出的電壓矢量重新限定在正六邊形邊界內(nèi)。不同的過調(diào)制策略會(huì)給整個(gè)系統(tǒng)帶來不同的動(dòng)態(tài)性能,本文在對過調(diào)制策略進(jìn)行完善的基礎(chǔ)上,針對三種過調(diào)制策略對交流電動(dòng)機(jī)動(dòng)態(tài)性能的影響進(jìn)行了研究,并對其機(jī)理進(jìn)行了理論分析與探討。 @@ 本文首先以三相異步電動(dòng)機(jī)在兩相靜止坐標(biāo)系下的動(dòng)態(tài)方程為基礎(chǔ),按照轉(zhuǎn)子磁鏈定向,設(shè)計(jì)了轉(zhuǎn)子磁鏈觀測器,完成了勵(lì)磁電流分量和轉(zhuǎn)矩電流分量的解耦,并構(gòu)建了基于SVPWM的異步電動(dòng)機(jī)矢量控制系統(tǒng)的MATLAB仿真模型。在矢量控制中,電流控制對系統(tǒng)性能具有重要影響。為了改善系統(tǒng)性能,所設(shè)計(jì)的矢量控制系統(tǒng)采用了同步電流控制,并對反電勢進(jìn)行了前饋補(bǔ)償。 @@ 在分析了現(xiàn)有的三種過調(diào)制策略之后,對過調(diào)制策略進(jìn)行了完善,并構(gòu)建了異步電動(dòng)機(jī)矢量控制系統(tǒng)的過調(diào)制仿真模型。過調(diào)制中,當(dāng)原參考電壓矢量位于正六邊形中任意兩個(gè)扇區(qū)交界附近時(shí),過調(diào)制策略2和3所得到的新電壓矢量仍會(huì)超出正六邊形邊界,過調(diào)制算法不再適用于此區(qū)域。針對以上不足,本文對過調(diào)制策略2和3進(jìn)行了完善,使過調(diào)制算法適用于所有區(qū)域。采用完善后的過調(diào)制策略對轉(zhuǎn)速參考值變化和負(fù)載轉(zhuǎn)矩參考值變化的異步電動(dòng)機(jī)矢量控制系統(tǒng)進(jìn)行仿真,發(fā)現(xiàn)在加速與加載的條件下,過調(diào)制策略2的動(dòng)態(tài)性能好于過調(diào)制策略1,而過調(diào)制策略3的動(dòng)態(tài)性能最佳,具有最小的動(dòng)態(tài)響應(yīng)時(shí)間,暫態(tài)性能優(yōu)良;在減載的條件下,過調(diào)制策略1和2能夠很快的進(jìn)入穩(wěn)定狀態(tài),但是過調(diào)制策略3卻出現(xiàn)問題,動(dòng)態(tài)響應(yīng)時(shí)間很長,說明此策略具有一定的局限性。 @@ 本文深入探討了三種過調(diào)制策略導(dǎo)致不同動(dòng)態(tài)性能的內(nèi)在機(jī)理,通過對三種過調(diào)制策略中電壓矢量的幅值和相位進(jìn)行分析,理論上解釋了出現(xiàn)不同動(dòng)態(tài)響應(yīng)時(shí)間的原因。出現(xiàn)過調(diào)制時(shí),過調(diào)制策略2中新電壓矢量的幅值總是大于過調(diào)制策略1中新電壓矢量的幅值,所以動(dòng)態(tài)性能更好。在加速和加 載條件下,過調(diào)制策略3中新電壓矢量的相位總是超前于過調(diào)制策略1和2中新電壓矢量的相位,因此可以獲得更快的動(dòng)態(tài)響應(yīng),暫態(tài)性能更佳。但是在減載條件下,過調(diào)制策略3中新電壓矢量與原電壓矢量間的相位關(guān)系處于無規(guī)律的超前滯后狀態(tài),導(dǎo)致過調(diào)制策略3出現(xiàn)問題,動(dòng)態(tài)響應(yīng)時(shí)間很長,說明此過調(diào)制策略有其不足之處,有待于改進(jìn)。@@關(guān)鍵詞:SVPWM;矢量控制;過調(diào)制;動(dòng)態(tài)性能
標(biāo)簽: SVPWM 逆變器 過調(diào)制
上傳時(shí)間: 2013-06-27
上傳用戶:nunnzhy
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1