實現背包問題
package problem
1. 問題描述
假設有一個能裝入總體積為T的背包和n件體積分別為w1 , w2 , … , wn 的物品,能否從n件物品中挑選若干件恰好裝滿背包,即使w1 +w2 + … + wn=T,要求找出所有滿足上述條件的解。例如:當T=10,各件物品的體積{1,8,4,3,5,2}時,可找到下列4組解: (1,4,3,2)、(1,4,5)、(8,2)、(3,5,2)。
2. 基本要求
讀入T、n、w1 , w2 , … , wn
3.提示:
可利用遞歸方法:若選中w1 則問題變成在w2 , … , wn 中挑選若干件使得其重量之和為T- w1 ,若不選中w1,則問題變成在w2 , … , wn 中挑選若干件使得其重量之和為T 。依次類推。
也可利用回溯法的設計思想來解決背包問題。首先將物品排成一列,然后順序選取物品裝入背包,假設已選取了前i 件物品之后背包還沒有裝滿,則繼續選取第i+1件物品,若該件物品“太大”不能裝入,則棄之而繼續選取下一件,直至背包裝滿為止。但如果在剩余的物品中找不到合適的物品以填滿背包,則說明“剛剛”裝入背包的那件物品“不合適”,應將它取出“棄之一邊”,繼續再從“它之后”的物品中選取,如此重復,,直至求得滿足條件的解,或者無解。
注:沒壓縮密碼
標簽:
package
problem
體積
w2
上傳時間:
2014-01-18
上傳用戶:yxgi5
回溯(b a c k t r a c k i n g)是一種系統地搜索問題解答的方法。為了實現回溯,首先需要為問題定義一個解空間( solution space),這個空間必須至少包含問題的一個解(可能是最優的)。在迷宮老鼠問題中,我們可以定義一個包含從入口到出口的所有路徑的解空間;在具有n 個對象的0 / 1背包問題中(見1 . 4節和2 . 2節),解空間的一個合理選擇是2n 個長度為n 的0 / 1向量的集合,這個集合表示了將0或1分配給x的所有可能方法。當n= 3時,解空間為{ ( 0 , 0 , 0 ),( 0 , 1 , 0 ),( 0 , 0 , 1 ),( 1 , 0 , 0 ),( 0 , 1 , 1 ),( 1 , 0 , 1 ),( 1 , 1 , 0 ),( 1 , 1 , 1 ) }。
標簽:
搜索
上傳時間:
2014-01-17
上傳用戶:jhksyghr