一:需求分析 1. 問題描述 魔王總是使用自己的一種非常精練而抽象的語言講話,沒人能聽懂,但他的語言是可逐步解釋成人能聽懂的語言,因為他的語言是由以下兩種形式的規則由人的語言逐步抽象上去的: ----------------------------------------------------------- (1) a---> (B1)(B2)....(Bm) (2)[(op1)(p2)...(pn)]---->[o(pn)][o(p(n-1))].....[o(p1)o] ----------------------------------------------------------- 在這兩種形式中,從左到右均表示解釋.試寫一個魔王語言的解釋系統,把 他的話解釋成人能聽得懂的話. 2. 基本要求: 用下述兩條具體規則和上述規則形式(2)實現.設大寫字母表示魔王語言的詞匯 小寫字母表示人的語言的詞匯 希臘字母表示可以用大寫字母或小寫字母代換的變量.魔王語言可含人的詞匯. (1) B --> tAdA (2) A --> sae 3. 測試數據: B(ehnxgz)B 解釋成 tsaedsaeezegexenehetsaedsae若將小寫字母與漢字建立下表所示的對應關系,則魔王說的話是:"天上一只鵝地上一只鵝鵝追鵝趕鵝下鵝蛋鵝恨鵝天上一只鵝地上一只鵝". | t | d | s | a | e | z | g | x | n | h | | 天 | 地 | 上 | 一只| 鵝 | 追 | 趕 | 下 | 蛋 | 恨 |
上傳時間: 2014-12-02
上傳用戶:jkhjkh1982
針對XML 數據半結構化的特點及概率查詢的理論,結合蟻群算法,提出添加雜交 算子,更新信息素的方法,不僅能動態選擇數據查詢方向。
上傳時間: 2014-01-01
上傳用戶:壞壞的華仔
We have a group of N items (represented by integers from 1 to N), and we know that there is some total order defined for these items. You may assume that no two elements will be equal (for all a, b: a<b or b<a). However, it is expensive to compare two items. Your task is to make a number of comparisons, and then output the sorted order. The cost of determining if a < b is given by the bth integer of element a of costs (space delimited), which is the same as the ath integer of element b. Naturally, you will be judged on the total cost of the comparisons you make before outputting the sorted order. If your order is incorrect, you will receive a 0. Otherwise, your score will be opt/cost, where opt is the best cost anyone has achieved and cost is the total cost of the comparisons you make (so your score for a test case will be between 0 and 1). Your score for the problem will simply be the sum of your scores for the individual test cases.
標簽: represented integers group items
上傳時間: 2016-01-17
上傳用戶:jeffery
The XML Toolbox converts MATLAB data types (such as double, char, struct, complex, sparse, logical) of any level of nesting to XML format and vice versa. For example, >> project.name = MyProject >> project.id = 1234 >> project.param.a = 3.1415 >> project.param.b = 42 becomes with str=xml_format(project, off ) "<project> <name>MyProject</name> <id>1234</id> <param> <a>3.1415</a> <b>42</b> </param> </project>" On the other hand, if an XML string XStr is given, this can be converted easily to a MATLAB data type or structure V with the command V=xml_parse(XStr).
標簽: converts Toolbox complex logical
上傳時間: 2016-02-12
上傳用戶:a673761058
求標準偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1
標簽: gt myfunction function numel
上傳時間: 2014-01-15
上傳用戶:hongmo
求標準偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1
標簽: gt myfunction function numel
上傳時間: 2013-12-26
上傳用戶:dreamboy36
求標準偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1
標簽: gt myfunction function numel
上傳時間: 2016-06-28
上傳用戶:change0329
求標準偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1
標簽: gt myfunction function numel
上傳時間: 2014-09-03
上傳用戶:jjj0202
動態規劃的方程大家都知道,就是 f[i,j]=min{f[i-1,j-1],f[i-1,j],f[i,j-1],f[i,j+1]}+a[i,j] 但是很多人會懷疑這道題的后效性而放棄動規做法。 本來我還想做Dijkstra,后來變了沒二十行pascal就告訴我數組越界了……(dist:array[1..1000*1001 div 2]...) 無奈之余看了xj_kidb1的題解,剛開始還覺得有問題,后來豁然開朗…… 反復動規。上山容易下山難,我們可以從上往下走,最后輸出f[n][1]。 xj_kidb1的一個技巧很重要,每次令f[i][0]=f[i][i],f[i][i+1]=f[i][1](xj_kidb1的題解還寫錯了)
上傳時間: 2014-07-16
上傳用戶:libinxny
Euler函數: m = p1^r1 * p2^r2 * …… * pn^rn ai >= 1 , 1 <= i <= n Euler函數: 定義:phi(m) 表示小于等于m并且與m互質的正整數的個數。 phi(m) = p1^(r1-1)*(p1-1) * p2^(r2-1)*(p2-1) * …… * pn^(rn-1)*(pn-1) = m*(1 - 1/p1)*(1 - 1/p2)*……*(1 - 1/pn) = p1^(r1-1)*p2^(r2-1)* …… * pn^(rn-1)*phi(p1*p2*……*pn) 定理:若(a , m) = 1 則有 a^phi(m) = 1 (mod m) 即a^phi(m) - 1 整出m 在實際代碼中可以用類似素數篩法求出 for (i = 1 i < MAXN i++) phi[i] = i for (i = 2 i < MAXN i++) if (phi[i] == i) { for (j = i j < MAXN j += i) { phi[j] /= i phi[j] *= i - 1 } } 容斥原理:定義phi(p) 為比p小的與p互素的數的個數 設n的素因子有p1, p2, p3, … pk 包含p1, p2…的個數為n/p1, n/p2… 包含p1*p2, p2*p3…的個數為n/(p1*p2)… phi(n) = n - sigm_[i = 1](n/pi) + sigm_[i!=j](n/(pi*pj)) - …… +- n/(p1*p2……pk) = n*(1 - 1/p1)*(1 - 1/p2)*……*(1 - 1/pk)
上傳時間: 2014-01-10
上傳用戶:wkchong