亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

計(jì)算機(jī)信息

  • 求標準偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) >

    求標準偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1

    標簽: gt myfunction function numel

    上傳時間: 2014-01-15

    上傳用戶:hongmo

  • 求標準偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) >

    求標準偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1

    標簽: gt myfunction function numel

    上傳時間: 2013-12-26

    上傳用戶:dreamboy36

  • 求標準偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) >

    求標準偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1

    標簽: gt myfunction function numel

    上傳時間: 2016-06-28

    上傳用戶:change0329

  • 求標準偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) >

    求標準偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1

    標簽: gt myfunction function numel

    上傳時間: 2014-09-03

    上傳用戶:jjj0202

  • 動態規劃的方程大家都知道

    動態規劃的方程大家都知道,就是 f[i,j]=min{f[i-1,j-1],f[i-1,j],f[i,j-1],f[i,j+1]}+a[i,j] 但是很多人會懷疑這道題的后效性而放棄動規做法。 本來我還想做Dijkstra,后來變了沒二十行pascal就告訴我數組越界了……(dist:array[1..1000*1001 div 2]...) 無奈之余看了xj_kidb1的題解,剛開始還覺得有問題,后來豁然開朗…… 反復動規。上山容易下山難,我們可以從上往下走,最后輸出f[n][1]。 xj_kidb1的一個技巧很重要,每次令f[i][0]=f[i][i],f[i][i+1]=f[i][1](xj_kidb1的題解還寫錯了)

    標簽: 動態規劃 方程

    上傳時間: 2014-07-16

    上傳用戶:libinxny

  • Euler函數: m = p1^r1 * p2^r2 * …… * pn^rn ai >= 1 , 1 <= i <= n Euler函數: 定義:phi(m) 表示小于等

    Euler函數: m = p1^r1 * p2^r2 * …… * pn^rn ai >= 1 , 1 <= i <= n Euler函數: 定義:phi(m) 表示小于等于m并且與m互質的正整數的個數。 phi(m) = p1^(r1-1)*(p1-1) * p2^(r2-1)*(p2-1) * …… * pn^(rn-1)*(pn-1) = m*(1 - 1/p1)*(1 - 1/p2)*……*(1 - 1/pn) = p1^(r1-1)*p2^(r2-1)* …… * pn^(rn-1)*phi(p1*p2*……*pn) 定理:若(a , m) = 1 則有 a^phi(m) = 1 (mod m) 即a^phi(m) - 1 整出m 在實際代碼中可以用類似素數篩法求出 for (i = 1 i < MAXN i++) phi[i] = i for (i = 2 i < MAXN i++) if (phi[i] == i) { for (j = i j < MAXN j += i) { phi[j] /= i phi[j] *= i - 1 } } 容斥原理:定義phi(p) 為比p小的與p互素的數的個數 設n的素因子有p1, p2, p3, … pk 包含p1, p2…的個數為n/p1, n/p2… 包含p1*p2, p2*p3…的個數為n/(p1*p2)… phi(n) = n - sigm_[i = 1](n/pi) + sigm_[i!=j](n/(pi*pj)) - …… +- n/(p1*p2……pk) = n*(1 - 1/p1)*(1 - 1/p2)*……*(1 - 1/pk)

    標簽: Euler lt phi 函數

    上傳時間: 2014-01-10

    上傳用戶:wkchong

  • //Euler 函數前n項和 /* phi(n) 為n的Euler原函數 if( (n/p) % i == 0 ) phi(n)=phi(n/p)*i else phi(n)=phi(n/p

    //Euler 函數前n項和 /* phi(n) 為n的Euler原函數 if( (n/p) % i == 0 ) phi(n)=phi(n/p)*i else phi(n)=phi(n/p)*(i-1) 對于約數:divnum 如果i|pr[j] 那么 divnum[i*pr[j]]=divsum[i]/(e[i]+1)*(e[i]+2) //最小素因子次數加1 否則 divnum[i*pr[j]]=divnum[i]*divnum[pr[j]] //滿足積性函數條件 對于素因子的冪次 e[i] 如果i|pr[j] e[i*pr[j]]=e[i]+1 //最小素因子次數加1 否則 e[i*pr[j]]=1 //pr[j]為1次 對于本題: 1. 篩素數的時候首先會判斷i是否是素數。 根據定義,當 x 是素數時 phi[x] = x-1 因此這里我們可以直接寫上 phi[i] = i-1 2. 接著我們會看prime[j]是否是i的約數 如果是,那么根據上述推導,我們有:phi[ i * prime[j] ] = phi[i] * prime[j] 否則 phi[ i * prime[j] ] = phi[i] * (prime[j]-1) (其實這里prime[j]-1就是phi[prime[j]],利用了歐拉函數的積性) 經過以上改良,在篩完素數后,我們就計算出了phi[]的所有值。 我們求出phi[]的前綴和 */

    標簽: phi Euler else 函數

    上傳時間: 2016-12-31

    上傳用戶:gyq

  • Visual 開發 希望對你們有幫助 public static int Rom(int n, int m)//雙寄或雙偶 { int count = 0 //第一排Y坐標上要幾個

    Visual 開發 希望對你們有幫助 public static int Rom(int n, int m)//雙寄或雙偶 { int count = 0 //第一排Y坐標上要幾個 if (n < m) { for (int i = 1 i <= n i = i + 2) { count++ } } else { for (int j = 1 j <= m j = j + 2) { count++ } } return count }

    標簽: int Visual public static

    上傳時間: 2013-12-13

    上傳用戶:懶龍1988

  • 遙控解碼通過電腦串口顯示 /* 晶振:11.0569MHz */ #include <REGX52.h> #define uchar unsigned char uchar d

    遙控解碼通過電腦串口顯示 /* 晶振:11.0569MHz */ #include <REGX52.h> #define uchar unsigned char uchar data IRcode[4] //定義一個4字節的數組用來存儲代碼 uchar CodeTemp //編碼字節緩存變量 uchar i,j,k //延時用的循環變量 sbit IRsignal=P3^2 //HS0038接收頭OUT端直接連P3.2(INT0) /**************************延時0.9ms子程序**********************/ void Delay0_9ms(void) {uchar j,k for(j=18 j>0 j--) for(k=20 k>0 k--) } /***************************延時1ms子程序**********************/ void Delay1ms(void) {uchar i,j for(i=2 i>0 i--) for(j=230 j>0 j--) }

    標簽: uchar unsigned 11.0569 include

    上傳時間: 2013-12-12

    上傳用戶:Breathe0125

  • Instead of finding the longest common subsequence, let us try to determine the length of the LCS.

    Instead of finding the longest common subsequence, let us try to determine the length of the LCS. 􀂄 Then tracking back to find the LCS. 􀂄 Consider a1a2…am and b1b2…bn. 􀂄 Case 1: am=bn. The LCS must contain am, we have to find the LCS of a1a2…am-1 and b1b2…bn-1. 􀂄 Case 2: am≠bn. Wehave to find the LCS of a1a2…am-1 and b1b2…bn, and a1a2…am and b b b b1b2…bn-1 Let A = a1 a2 … am and B = b1 b2 … bn 􀂄 Let Li j denote the length of the longest i,g g common subsequence of a1 a2 … ai and b1 b2 … bj. 􀂄 Li,j = Li-1,j-1 + 1 if ai=bj max{ L L } a≠b i-1,j, i,j-1 if ai≠j L0,0 = L0,j = Li,0 = 0 for 1≤i≤m, 1≤j≤n.

    標簽: the subsequence determine Instead

    上傳時間: 2013-12-17

    上傳用戶:evil

主站蜘蛛池模板: 固镇县| 湖北省| 桂林市| 朝阳市| 巫溪县| 会理县| 莫力| 深泽县| 琼中| 黄大仙区| 安徽省| 鸡西市| 大足县| 大田县| 腾冲县| 怀集县| 介休市| 沂南县| 武威市| 宝山区| 珠海市| 元阳县| 泸州市| 沾化县| 白城市| 乾安县| 玉田县| 客服| 清徐县| 清水县| 扬中市| 繁昌县| 古蔺县| 乡宁县| 隆化县| 安阳市| 满洲里市| 泰州市| 连江县| 原阳县| 措美县|