亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁(yè)| 資源下載| 資源專輯| 精品軟件
登錄| 注冊(cè)

計(jì)(jì)算機(jī)(jī)操作

  • 求標(biāo)準(zhǔn)偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) >

    求標(biāo)準(zhǔn)偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1

    標(biāo)簽: gt myfunction function numel

    上傳時(shí)間: 2016-06-28

    上傳用戶:change0329

  • 求標(biāo)準(zhǔn)偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) >

    求標(biāo)準(zhǔn)偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1

    標(biāo)簽: gt myfunction function numel

    上傳時(shí)間: 2014-09-03

    上傳用戶:jjj0202

  • 動(dòng)態(tài)規(guī)劃的方程大家都知道

    動(dòng)態(tài)規(guī)劃的方程大家都知道,就是 f[i,j]=min{f[i-1,j-1],f[i-1,j],f[i,j-1],f[i,j+1]}+a[i,j] 但是很多人會(huì)懷疑這道題的后效性而放棄動(dòng)規(guī)做法。 本來(lái)我還想做Dijkstra,后來(lái)變了沒(méi)二十行pascal就告訴我數(shù)組越界了……(dist:array[1..1000*1001 div 2]...) 無(wú)奈之余看了xj_kidb1的題解,剛開(kāi)始還覺(jué)得有問(wèn)題,后來(lái)豁然開(kāi)朗…… 反復(fù)動(dòng)規(guī)。上山容易下山難,我們可以從上往下走,最后輸出f[n][1]。 xj_kidb1的一個(gè)技巧很重要,每次令f[i][0]=f[i][i],f[i][i+1]=f[i][1](xj_kidb1的題解還寫錯(cuò)了)

    標(biāo)簽: 動(dòng)態(tài)規(guī)劃 方程

    上傳時(shí)間: 2014-07-16

    上傳用戶:libinxny

  • Euler函數(shù): m = p1^r1 * p2^r2 * …… * pn^rn ai >= 1 , 1 <= i <= n Euler函數(shù): 定義:phi(m) 表示小于等

    Euler函數(shù): m = p1^r1 * p2^r2 * …… * pn^rn ai >= 1 , 1 <= i <= n Euler函數(shù): 定義:phi(m) 表示小于等于m并且與m互質(zhì)的正整數(shù)的個(gè)數(shù)。 phi(m) = p1^(r1-1)*(p1-1) * p2^(r2-1)*(p2-1) * …… * pn^(rn-1)*(pn-1) = m*(1 - 1/p1)*(1 - 1/p2)*……*(1 - 1/pn) = p1^(r1-1)*p2^(r2-1)* …… * pn^(rn-1)*phi(p1*p2*……*pn) 定理:若(a , m) = 1 則有 a^phi(m) = 1 (mod m) 即a^phi(m) - 1 整出m 在實(shí)際代碼中可以用類似素?cái)?shù)篩法求出 for (i = 1 i < MAXN i++) phi[i] = i for (i = 2 i < MAXN i++) if (phi[i] == i) { for (j = i j < MAXN j += i) { phi[j] /= i phi[j] *= i - 1 } } 容斥原理:定義phi(p) 為比p小的與p互素的數(shù)的個(gè)數(shù) 設(shè)n的素因子有p1, p2, p3, … pk 包含p1, p2…的個(gè)數(shù)為n/p1, n/p2… 包含p1*p2, p2*p3…的個(gè)數(shù)為n/(p1*p2)… phi(n) = n - sigm_[i = 1](n/pi) + sigm_[i!=j](n/(pi*pj)) - …… +- n/(p1*p2……pk) = n*(1 - 1/p1)*(1 - 1/p2)*……*(1 - 1/pk)

    標(biāo)簽: Euler lt phi 函數(shù)

    上傳時(shí)間: 2014-01-10

    上傳用戶:wkchong

  • //Euler 函數(shù)前n項(xiàng)和 /* phi(n) 為n的Euler原函數(shù) if( (n/p) % i == 0 ) phi(n)=phi(n/p)*i else phi(n)=phi(n/p

    //Euler 函數(shù)前n項(xiàng)和 /* phi(n) 為n的Euler原函數(shù) if( (n/p) % i == 0 ) phi(n)=phi(n/p)*i else phi(n)=phi(n/p)*(i-1) 對(duì)于約數(shù):divnum 如果i|pr[j] 那么 divnum[i*pr[j]]=divsum[i]/(e[i]+1)*(e[i]+2) //最小素因子次數(shù)加1 否則 divnum[i*pr[j]]=divnum[i]*divnum[pr[j]] //滿足積性函數(shù)條件 對(duì)于素因子的冪次 e[i] 如果i|pr[j] e[i*pr[j]]=e[i]+1 //最小素因子次數(shù)加1 否則 e[i*pr[j]]=1 //pr[j]為1次 對(duì)于本題: 1. 篩素?cái)?shù)的時(shí)候首先會(huì)判斷i是否是素?cái)?shù)。 根據(jù)定義,當(dāng) x 是素?cái)?shù)時(shí) phi[x] = x-1 因此這里我們可以直接寫上 phi[i] = i-1 2. 接著我們會(huì)看prime[j]是否是i的約數(shù) 如果是,那么根據(jù)上述推導(dǎo),我們有:phi[ i * prime[j] ] = phi[i] * prime[j] 否則 phi[ i * prime[j] ] = phi[i] * (prime[j]-1) (其實(shí)這里prime[j]-1就是phi[prime[j]],利用了歐拉函數(shù)的積性) 經(jīng)過(guò)以上改良,在篩完素?cái)?shù)后,我們就計(jì)算出了phi[]的所有值。 我們求出phi[]的前綴和 */

    標(biāo)簽: phi Euler else 函數(shù)

    上傳時(shí)間: 2016-12-31

    上傳用戶:gyq

  • Visual 開(kāi)發(fā) 希望對(duì)你們有幫助 public static int Rom(int n, int m)//雙寄或雙偶 { int count = 0 //第一排Y坐標(biāo)上要幾個(gè)

    Visual 開(kāi)發(fā) 希望對(duì)你們有幫助 public static int Rom(int n, int m)//雙寄或雙偶 { int count = 0 //第一排Y坐標(biāo)上要幾個(gè) if (n < m) { for (int i = 1 i <= n i = i + 2) { count++ } } else { for (int j = 1 j <= m j = j + 2) { count++ } } return count }

    標(biāo)簽: int Visual public static

    上傳時(shí)間: 2013-12-13

    上傳用戶:懶龍1988

  • 遙控解碼通過(guò)電腦串口顯示 /* 晶振:11.0569MHz */ #include <REGX52.h> #define uchar unsigned char uchar d

    遙控解碼通過(guò)電腦串口顯示 /* 晶振:11.0569MHz */ #include <REGX52.h> #define uchar unsigned char uchar data IRcode[4] //定義一個(gè)4字節(jié)的數(shù)組用來(lái)存儲(chǔ)代碼 uchar CodeTemp //編碼字節(jié)緩存變量 uchar i,j,k //延時(shí)用的循環(huán)變量 sbit IRsignal=P3^2 //HS0038接收頭OUT端直接連P3.2(INT0) /**************************延時(shí)0.9ms子程序**********************/ void Delay0_9ms(void) {uchar j,k for(j=18 j>0 j--) for(k=20 k>0 k--) } /***************************延時(shí)1ms子程序**********************/ void Delay1ms(void) {uchar i,j for(i=2 i>0 i--) for(j=230 j>0 j--) }

    標(biāo)簽: uchar unsigned 11.0569 include

    上傳時(shí)間: 2013-12-12

    上傳用戶:Breathe0125

  • Instead of finding the longest common subsequence, let us try to determine the length of the LCS.

    Instead of finding the longest common subsequence, let us try to determine the length of the LCS. 􀂄 Then tracking back to find the LCS. 􀂄 Consider a1a2…am and b1b2…bn. 􀂄 Case 1: am=bn. The LCS must contain am, we have to find the LCS of a1a2…am-1 and b1b2…bn-1. 􀂄 Case 2: am≠bn. Wehave to find the LCS of a1a2…am-1 and b1b2…bn, and a1a2…am and b b b b1b2…bn-1 Let A = a1 a2 … am and B = b1 b2 … bn 􀂄 Let Li j denote the length of the longest i,g g common subsequence of a1 a2 … ai and b1 b2 … bj. 􀂄 Li,j = Li-1,j-1 + 1 if ai=bj max{ L L } a≠b i-1,j, i,j-1 if ai≠j L0,0 = L0,j = Li,0 = 0 for 1≤i≤m, 1≤j≤n.

    標(biāo)簽: the subsequence determine Instead

    上傳時(shí)間: 2013-12-17

    上傳用戶:evil

  • //初始化 initscr() //獲得屏幕尺寸 getmaxyx(stdscr, h, w) //畫背景 for(i=0 i<h i++)

    //初始化 initscr() //獲得屏幕尺寸 getmaxyx(stdscr, h, w) //畫背景 for(i=0 i<h i++) for(j=0 j<w j++){ mvaddch(i, j, ACS_CKBOARD) } refresh() //建立窗口 pad = newpad(80, 128) for(i=0 i<80 i++){ char line[128] sprintf(line, "This line in pad is numbered d\n", i) mvwprintw(pad, i, 0, line) } //刷新屏幕 refresh() prefresh(pad, 0, 1, 5, 10, 20, 45) for(i=0 i<50 i++){ prefresh(pad, i+1, 1, 5, 10, 20, 45) usleep(30000) } //等待按鍵 getch()

    標(biāo)簽: getmaxyx initscr stdscr for

    上傳時(shí)間: 2014-08-30

    上傳用戶:龍飛艇

  • 嚴(yán)格按照BP網(wǎng)絡(luò)計(jì)算公式來(lái)設(shè)計(jì)的一個(gè)matlab程序,對(duì)BP網(wǎng)絡(luò)進(jìn)行了優(yōu)化設(shè)計(jì) 優(yōu)化1:設(shè)計(jì)了yyy

    嚴(yán)格按照BP網(wǎng)絡(luò)計(jì)算公式來(lái)設(shè)計(jì)的一個(gè)matlab程序,對(duì)BP網(wǎng)絡(luò)進(jìn)行了優(yōu)化設(shè)計(jì) 優(yōu)化1:設(shè)計(jì)了yyy,即在o(k)計(jì)算公式時(shí),當(dāng)網(wǎng)絡(luò)進(jìn)入平坦區(qū)時(shí)(<0.0001)學(xué)習(xí)率加大,出來(lái)后學(xué)習(xí)率又還原 優(yōu)化2:v(i,j)=v(i,j)+deltv(i,j)+a*dv(i,j)

    標(biāo)簽: matlab yyy BP網(wǎng)絡(luò) 計(jì)算公式

    上傳時(shí)間: 2014-11-30

    上傳用戶:妄想演繹師

主站蜘蛛池模板: 浑源县| 驻马店市| 松江区| 新宁县| 台州市| 玉溪市| 英山县| 黄龙县| 柳江县| 广南县| 廊坊市| 定襄县| 珲春市| 鄂伦春自治旗| 汨罗市| 哈尔滨市| 望奎县| 道真| 顺昌县| 灌云县| 定边县| 玉山县| 临颍县| 兴山县| 星子县| 洪雅县| 什邡市| 江永县| 青浦区| 万盛区| 方山县| 高青县| 宁安市| 肇州县| 亳州市| 沁水县| 红安县| 新晃| 孟村| 新和县| 江北区|