模擬退火算法來源于固體退火原理,將固體加溫至充分高,再讓其徐徐冷卻,加溫時,固體內部粒子隨溫升變為無序狀,內能增大,而徐徐冷卻時粒子漸趨有序,在每個溫度都達到平衡態,最后在常溫時達到基態,內能減為最小。根據Metropolis準則,粒子在溫度T時趨于平衡的概率為e-ΔE/(kT),其中E為溫度T時的內能,ΔE為其改變量,k為Boltzmann常數。用固體退火模擬組合優化問題,將內能E模擬為目標函數值f,溫度T演化成控制參數t,即得到解組合優化問題的模擬退火算法:由初始解i和控制參數初值t開始,對當前解重復“產生新解→計算目標函數差→接受或舍棄”的迭代,并逐步衰減t值,算法終止時的當前解即為所得近似最優解,這是基于蒙特卡羅迭代求解法的一種啟發式隨機搜索過程。退火過程由冷卻進度表(Cooling Schedule)控制,包括控制參數的初值t及其衰減因子Δt、每個t值時的迭代次數L和停止條件S。
標簽:
模擬退火算法
上傳時間:
2015-04-24
上傳用戶:R50974