亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

諧波失真

諧波是指正常電流波形的一種失真,一般是由非線性負載發射的。諧波失真(HD)指的是目標諧波(二階、三階)等的均方根(RMS)值與信號電平均方根值的比值[1]。諧波失真是由于系統不是完全線性造成的。在音頻應用中,通常表示為一個百分比,在通信應用中,則通常表示為dB。其測量方式是,將一個頻譜純凈的正弦波應用于一個放大器,并用一個頻譜分析儀觀察放大器的輸出。
  • 基于BOOST變換器的高功率因數軟開關電源的研究.rar

    隨著電力電子技術的發展,對大功率、高性能的開關電源要求也越來越高。功率因數校正(PFC)技術是當前電力電子技術研究的熱點問題。大多數電力電子裝置通過整流器與電網接口,而傳統的二極管或晶閘管整流裝置會產生大量的諧波電流,對電網造成污染。許多國家和國際組織相繼制定了一系列限制用電設備諧波的標準。有源功率因數校正技術能夠有效的消除整流裝置的諧波,因此具有廣泛的應用前景。 本文首先分析了開關電源的發展現狀及發展要求,詳細地闡述了開關電源的基本構成和基本組態。然后研究了ZVT-Boost軟開關PFC電路的基本結構、基本工作原理及軟開關實現原理,在此基礎上確定了主電路結構,并制定了控制系統方案。 鑒于功率要求,本文采用兩級PFC電路。因此對常見的DC-DC變換器的拓撲結構、原理特性進行分析。并針對各自的變換器建立了簡化模型,基于所建立的模型分析了變換器的特性,列出各變換器的優缺點及在設計開關電源時的選用原則。最后,對所設計的系統進行了仿真分析。 本文根據用戶的要求研究設計了一種大功率高性能開關電源。該開關電源分為前級和后級,前級為采用BOOST結構的單相有源功率因數校正電路,后級為采用移相控制軟開關技術的全橋變換器。最后研制出了實驗樣機,并給出了實驗樣機的功率因數校正電路和移相全橋軟開關變換電路的實驗波形。

    標簽: BOOST 變換器 高功率因數

    上傳時間: 2013-04-24

    上傳用戶:朗朗乾坤

  • 三相PWM整流系統研究.rar

    使用二極管和晶閘管實現的不控和可控整流器,電流波形畸變給電網注入大量諧波和無功功率,造成嚴重的電網污染。隨著電力電子技術的發展,人們開始研究PWM整流技術。電壓型PWM整流器具有交流側電流低諧波、高功率因數、直流電壓輸出穩定等諸多優點,因此,成為當前電力電子領域研究的熱點課題之一。由于PWM整流器具有以上優點,在電力系統有源濾波、無功補償、潮流控制、太陽能發電以及交直流傳動系統等領域,具有越來越廣闊的應用前景。本論文對三相PWM整流器進行了研究,主要完成以下工作: 首先,對PWM整流器的工作原理做了介紹,給出了三相PWM整流器的拓撲結構,分析了PWM整流器的換流過程,給出了PWM整流器的數學模型,對交流側電感和直流側電容進行了設計。 其次,對電流滯環控制、電流PI控制、空間電壓矢量控制三種控制方法分別進行了介紹、模型搭建和仿真分析。在直流電壓的控制中加入分段PI控制,使超調量和穩態誤差限制在很小的范圍以內。在起動過程中串接入限流電阻,使起動電流限定允許范圍以內。 最后,在進行了以上三種控制方式仿真后,針對電壓空間矢量控制存在的電流誤差問題,采用電流超前給定策略和基于旋轉坐標系的空間電壓矢量控制策略解決了電流誤差問題。 仿真結果表明,論文所設計的三相電壓型PWM整流器實現了高功率因數運行,實現了直流電壓的穩定控制,解決了傳統意義上的整流電路中存在諧波含量大、功率因數低等問題,具有良好的工程實用價值。

    標簽: PWM 三相 整流

    上傳時間: 2013-06-16

    上傳用戶:胡佳明胡佳明

  • 并聯型有源電力濾波器仿真及其設計.rar

    有源電力濾波器(Active Power Filter,簡稱 APF)是近年來治理電力系統諧波污染的非常有效的裝置。眾所周知,電力電子裝置和非線性負載的廣泛使用,使諧波電流和無功電流大量注入電網,嚴重威脅電網和電氣設備的安全運行與正常使用,并且產生大量的能源浪費。隨著我國“十一五”規劃中關于建設節約型社會的戰略方針的提出,應用APF進行諧波和無功治理的研究工作將會有很廣闊的應用前景。 本文闡述了有源電力濾波器的基本原理,介紹了當前主要的幾種APF的分類以及電路拓撲結構,分別對三相三線和三相四線制APF的結構進行分析,建立了兩種數學模型,指出三相三線制APF在實際供電系統中應用的局限性。本文介紹了三種當前廣泛采用的電流控制方法和一種比較先進的空間矢量控制方法。對于APF系統的核心--諧波檢測,本文介紹了三種諧波檢測理論,著重對本文設計的APF所采用的瞬時無功功率理論進行詳細的理論分析,在MATLAB軟件中建立一個三相四線制基于瞬時無功功率理論的APF系統仿真模型,驗證瞬時無功功率理論的可行性。 在進行大量理論分析和驗證的基礎上,設計一臺采用單片機和DSP雙CPU的有源電力濾波器。硬件上設計單片機的時鐘電路、仿真器接口電路;設計DSP的時鐘電路,外接存儲器擴展電路;設計APF系統的電壓周期檢測電路,電流絕對值轉換電路等等。軟件上編寫單片機的主程序和中斷程序、DSP的主程序和啟動搬運程序,調試并給電進行實際測試和實驗分析。

    標簽: 并聯型 仿真 有源電力濾波器

    上傳時間: 2013-04-24

    上傳用戶:zuozuo1215

  • 三相橋式整流的功率因數校正技術的研究.rar

    隨著電力電子技術的發展,交流電源系統的電能質量問題受到越來越多的關注。傳統的整流環節廣泛采用二極管不控整流和晶閘管相控整流電路,向電網注入了大量的諧波及無功,造成了嚴重的污染。提高電網側功率因數以及降低輸入電流諧波成為一個研究熱點。功率因數校正技術是減小用電設備對電網造成的諧波污染,提高功率因數的一項有力措施。本文所做的主要工作包括以下幾部分: 1.分析了單位功率因數三相橋式整流的工作原理,這種整流拓撲從工作原理上可以分成兩部分:功率因數補償網絡和常規整流網絡。在此基礎上,為整流電路建立了精確的數學模型。 2.這種單位功率因數三相橋式整流的輸入電感是在額定負載下計算出的,當負載發生變化時,其功率因數會降低。針對這種情況,提出了一種新的控制方法。常規整流網絡向電網注入的諧波可以由功率因數補償網絡進行補償,所以輸入功率因數相應提高。負載消耗的有功由電網提供,補償網絡既不消耗有功也不提供任何有功。根據功率平衡理論,可以確定參考補償電流。雙向開關的導通和關斷由滯環電流控制確定。在這一方法的控制下,雙向開關工作在高頻下,因此輸入電感值相應降低。仿真和實驗結果都表明:新的控制方法下,負載變化時,輸入電流仍接近于正弦,功率因數接近1。 3.根據IEEE-519標準對諧波電流畸變率的要求,為單位功率因數三相橋式整流提出了另一種控制方法。該方法綜合考慮單次諧波電流畸變率、總諧波畸變率、功率因數、有功消耗等性能指標,并進行優化,推導出最優電流補償增益和相移。將三相負載電流通過具有最優電流補償增益和相移的電流補償濾波器,得到補償后期望的電網電流,驅動雙向開關導通和關斷。仿真和實驗都收到了滿意的效果,使這一整流橋可以工作在較寬的負載范圍內。 4.單位功率因數三相橋式整流中直流側電容電壓隨負載的波動而波動,為提高其動、靜態性能,將簡單自適應控制應用到了直流側電容電壓的控制中,并提出利用改進的二次型性能指標修改自適應參數的方法,可以在實現對參考模型跟蹤的同時又不使控制增量過大,與常規的PI型簡單自適應控制相比在適應律的計算中引入了控制量的增量和狀態誤差在k及k+1時刻的采樣值。利用該方法為直流側電壓設計了控制器,并進行了仿真與實驗研究,結果表明與PI型適應律相比,新的控制器能提高系統的動態響應性能,負載變化時系統的魯棒性更強。

    標簽: 三相橋式 整流 功率因數

    上傳時間: 2013-06-15

    上傳用戶:WS Rye

  • 基于LCL濾波的三相電壓型PWM整流器的研究.rar

    由于高頻PWM整流器可以提供正弦化低諧波的輸入電流,可控功率因數,及雙向能量流動,因此得到越來越廣泛的應用。網側單電感濾波會帶來一些問題,首先要想得到較好的濾波效果,必須增大電感值,這樣系統的動態性能會變差,而且成本增加。另外,整流器的功率比較大時,交流側的濾波的損耗也會增大。為了解決上述問題,本文研究了基于LCL濾波的高頻PWM整流器。在交流側應用LCL 濾波器可以減少電流中的高次諧波含量,并在同樣的諧波要求下,相對純電感型濾波器可以降低電感值的大小,提高系統的動態響應。 文章首先對高頻PWM整流器的工作原理做了詳細的介紹,并對基于L和LCL兩種不同的濾波器,分別在ABC靜止坐標系,αβ靜止坐標系和dq旋轉坐標系中建立了數學模型。文章中將L濾波的電壓型三相PWM整流器的控制方法應用于LCL濾波情況。基于dq軸模型,提出了雙閉環的控制策略,電流內環采用前饋解耦控制。為了提高電流的跟隨性能,按照典型Ⅰ型系統設計電流調節器。為了提高電壓環的抗干擾性,按照典型Ⅱ型系統設計電壓調節器。 文章還詳細討論了LCL濾波器帶來的諧振問題,以及參數設計方法,列出了實際系統LCL濾波器參數的設計步驟。文章在MATLAB/SIMULINK環境下建立了PWM整流器仿真模型對系統進行了仿真,按照文章提出的理論設計的仿真系統具有良好的動態和穩態性能。 文章最后基于TMS320LF2407A設計了整流器裝置的控制系統硬件和軟件,并得到了初步實驗結果,能滿足控制要求,從而驗證了控制方案的正確性。

    標簽: LCL PWM 濾波

    上傳時間: 2013-07-01

    上傳用戶:yezhihao

  • 模塊化UPS并聯及控制技術研究.rar

    隨著用戶對供電質量要求的進一步提高,模塊化UPS 并聯系統獲得了越來越廣泛的應用。本文以模塊化UPS為研究對象,根據電路結構,將其分為直流部分模塊化和交流部分模塊化分別進行討論。整流環節對Boost-PFC 電路進行并聯控制,實現直流部分的模塊化;逆變環節在瞬時電壓PID 控制的基礎上,引入了瞬時均流的并聯控制策略,實現交流部分的模塊化。 介紹了有源功率因數校正技術的基本原理和控制思路,分析了單管雙Boost-PFC電路的工作過程,并將其簡化等效成常規的Boost 電路進行分析和控制。根據控制系統的結構,分別對電流控制環和電壓控制環進行了分析,得出了電感電流主要受電流指令的影響,而輸入輸出電壓差的影響則相對比較小;輸出電壓主要受參考給定指令電壓、緩啟給定指令電壓以及輸出電流等因素的影響。根據電流環和電壓環的解析表達式,給出了并聯控制的方法及原理。 對單相電路、三相電路以及多模塊并聯電路分別進行了仿真驗證,對多模塊的并聯系統進行了實驗驗證。建立了單相逆變器的數學模型,并加入PID 控制器,得到了輸出電壓的解析表達式,得出逆變器輸出電壓與參考給定電壓和輸出電流有關。利用極點配置的方法得到了模擬域PID 控制器參數的計算公式,并采用后向差分法,將其轉換到數字域,得到了數字PID 控制器參數與模擬域參數的換算關系。通過實驗測試和曲線擬合的辦法,得到了實際逆變器的電路參數。通過對所設計的數字PID 控制器進行仿真和實驗,驗證了理論分析和計算。建立了PID 電壓閉環的多逆變器并聯系統數學模型,分析得出并聯系統的輸出電壓主要由系統中各模塊的平均給定電壓決定,同時也受較高次的輸出諧波電流影響,受輸出基波電流影響相對較小;環流主要受模塊的給定電壓與系統平均給定電壓的偏差影響。針對環流產生的原因,提出了一種瞬時均流控制策略來減小系統環流對給定電壓偏差的增益,從而達到瞬時均流的目的。 對兩逆變模塊并聯的系統在各種工況下進行了仿真和實驗,驗證了理論分析的正確性和這種瞬時均流控制策略的可行性。

    標簽: UPS 模塊化 并聯

    上傳時間: 2013-04-24

    上傳用戶:ggwz258

  • 開關電源功率因數校正的研究.rar

    開關電源以其效率高、功率密度高在電源領域中占主導地位。開關電源多數是通過整流器與電力網相接的,經典的整流器是由二極管或晶閘管組成的一個非線性電路,其輸入電流波形呈脈沖狀,交流網側功率因數很低,在電網中會產生大量的電流諧波和無功功率而污染電網,成為電力公害。開關電源己成為電網最主要的諧波源之一。因此,進行網側功率因數校正成為目前研究的熱點之一。目前研究和應用得較多的高功率因數變換器要用兩級:DC/DC開關變換器串聯。這種電路的最大缺點是需要多個元器件、成本高、效率低,尤其在中小功率場合應用時很不經濟。現在國內外正在開發研究單級功率因數校正電路,具有很高的功率因數且成本低。因而研究單級功率因數校正及變換技術對抑制諧波污染、開創綠色電源以及實現當今開關電源的小型輕量化具有重大意義。 近年來隨著電子信息產業的高速發展,人們對開關電源的需求與日俱增,開關電源。PFC(Power Factor Correction)集成控制器己成為發展前景十分誘人的朝陽產業。隨著開關電源的廣泛應用,開關電源PFC集成控制器顯示出了強大的生命力,它具有集成度高、性價比高、外圍電路簡單和性能指標優良等優點,現已成為開發各類電源及開關電源模塊的優選集成電路。 本文首先闡述了電網污染的危害、功率因數的定義,總結了各種功率因數校正變換器的典型拓撲,對各種拓撲的特點、應用場合及控制方法作了比較分析,著重詳細介紹了反激拓撲的功率因數校正變換器的應用及優缺點。最后采用功率因數校正芯片SA7527進行了一個小功率電源的功率因數校正的設計,用實驗驗證了該設計的可行性,結果顯示功率因數能達到0.95左右,達到了較好的功率因數校正效果。

    標簽: 開關電源 功率因數校正

    上傳時間: 2013-06-30

    上傳用戶:czh415

  • 三電平變頻器技術的實用化研究.rar

    近年來,在電氣傳動領域中三電平變頻器得到了廣泛的應用。三電平逆變器拓撲結構的出現為高電壓、大功率變頻器的實現提供了一個有效的途徑。研究和開發三電平大功率變頻器,無論在技術上還是在實際應用上都有十分重要的意義。本文圍繞三電平大功率通用變頻器的實用化技術進行了深入分析和研究。 論文首先介紹了三電平逆變器主電路的拓撲結構、控制要求、基本原理、特性和PWM控制策略以及調試中存在的問題和相關的解決方法。 中點電位不平衡是三電平拓撲結構的一個固有問題。針對這一問題,本論文分析了中點電壓不平衡的根本原因,采用了一種基于滯環控制的電壓平衡控制方法。該方法根據負載電流方向的不同組合,通過調整小矢量的冗余狀態和作用時間,并充分考慮到中矢量對中點平衡的影響,動態調整兩個電容器上的電壓,同時,詳細地分析了當參考電壓矢量落到具有一種或兩種冗余小矢量的小三角形區間時開關狀態的選擇、開關序列的順序以及作用時間的分配。 基于載波的調制策略是三電平變頻器采用的主要調制方式之一。本論文對所采用的基于載波的調制策略,作了深入分析,得出了相應的諧波特性。基于諧波總含量,對調制特性的優劣進行了比較,同時得出了不同載波調制策略輸出電壓諧波含量與調制度變化的對應關系,并通過實驗和仿真對相關結果進行了驗證。 主電路和控制電路的硬件設計將直接影響到變頻器的運行性能。本論文介紹了在現場實際運行中變頻器的主回路及其控制回路的硬件設計,采用理論計算與實踐驗證相結合的方法得出器件相關參數,并且針對變頻器內外RCD緩沖電路在工作時所產生的電壓不平衡作了分析,詳細的給出了其緩沖吸收電路算法。 最后,把本文的部分研究結果應用于實際工業現場中,研制了690V/600kW的大功率中壓變頻器,給出了現場運行結果。運行結果表明該變頻器輸出波形良好,性能滿足要求。

    標簽: 三電平 變頻器

    上傳時間: 2013-08-04

    上傳用戶:kirivir

  • 基于Delta逆變技術的串聯補償式交流穩壓電源的研究.rar

    當今高新技術不斷發展,越來越多的高精度儀器設備對輸入電源,特別是對輸入交流電源的穩壓精度要求越來越高。與此同時,隨著我國經濟的發展和用電負載的急劇增加,電壓波動和波形畸變等供電質量問題日趨突出,不能滿足高精度儀器設備的需要,因而就需要在電網和這些設備之間增加高穩壓精度、寬穩壓范圍的交流穩壓電源。基于Delta逆變技術的交流穩壓電源既能進行瞬時的交流電壓穩定補償,又能提高整流輸入端的功率因數,減少諧波對電網的污染,因而具有重要的實際意義和研究價值。 本文采取串聯補償型變換器作為主電路的拓撲結構,并從能量雙向傳輸方面對主電路進行了詳細闡述。針對Delta逆變器工作特點對交流穩壓電源的工作原理進行了分析,并提出一種正向補償采取整流加高頻斬波,負向補償采取有源箝位Buck變換器的工作模式。建立Delta逆變器與電網相互作用的等效電路模型,得出了理想補償電壓與實際補償電壓定量關系式,分析了逆變輸出濾波器的結構、位置對濾波效果的影響和電氣參數對實際補償效果的作用規律。完成了逆變器的輸出濾波器、補償變壓器的設計和PWM整流器電容參數的計算。 針對穩壓系統中Delta逆變器和PWM整流器兩個主體環節,對Delta逆變器的前饋、反饋控制特性和PWM整流器的間接、直接電流控制特性分別進行了綜合比較,并應用MATLAB軟件建立了改進前饋控制與直接電流控制的仿真模型,對Delta逆變交流穩壓速度和精度進行了系統仿真分析,給出了仿真波形,驗證了文中所述控制策略的可行性。

    標簽: Delta 逆變技術 串聯補償

    上傳時間: 2013-07-10

    上傳用戶:1047385479

  • 基于LabVIEW的優化濾波方法研究.rar

    本文以濾波技術飛速發展,小波濾波優越性的凸現,以及虛擬儀器的易操作等良好特性為背景,以簡單易行和濾波效果良好為研究目的,展開本文信號濾波處理的研究工作。 在深入研究三種小波濾波方法原理和優缺點的基礎上,本文提出了一種新的優化濾波方法,包括以下三個方面: 首先,將靜態小波變換(SWT)應用于濾波處理。利用SWT的平移不變性和冗余性來進行含噪信號的分解,這樣不僅彌補了正交小波變換的不足,而且提高了濾波性能。 然后,提出了基于空域相關的優化閾值函數濾波算法。該算法把小波系數間的相關性應用于閾值濾波。它是在構造出基于空域相關的顯著性函數和基于顯著性函數的閾值濾波過程的基礎上,提出了基于空域相關的優化閾值函數,并且把極小化廣義交叉驗證(GCV)得到均方差(MSE)意義下的最優閾值作用于該優化閾值函數。該濾波算法不僅實現了噪聲的有效去除,而且信號的重要特征也保留完好; 最后,引入了新型鎖相環--正交鎖相環(QPLL)。鑒于QPLL不僅具有鎖定范圍寬、入鎖速度快、鎖定后精度高的性能,而且還具有良好的抑制諧波、噪聲的能力,以及對波形畸變不敏感等良好特性,所以QPLL的引入達到了信號鎖定和優化濾波的目的,使優化濾波方法的設計更具新意,而且取得了更好的濾波效果。 為了驗證優化濾波方法,本文搭建了實驗平臺,它是由FPGA信號采集部分和LabVIEW軟件濾波處理兩個部分構成。通過傳感器采集信號,經過A/D轉換后送入FPGA。以FPGA為CPU控制A/D轉換,并進行波形數據緩存,在接收到LabVIEW的命令后,將存儲的數據送給串口。在LabVIEW中,從串口檢測所需的波形數據,然后通過優化濾波方法將數據進行濾波處理,最后在前面板中把實驗結果顯示出來。 實驗結果表明,該優化濾波方法不僅能實現優良的濾波功能,而且簡單易行,是一種有效的濾波方法。

    標簽: LabVIEW 濾波 方法研究

    上傳時間: 2013-07-20

    上傳用戶:gokk

亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲综合色丁香婷婷六月图片| 欧美国产国产综合| 欧美一二区视频| 国产精品久久网站| 玖玖综合伊人| 国产伦精品一区二区三| 久久aⅴ国产欧美74aaa| 亚洲国产婷婷| 国产精品国产三级欧美二区| 久久精品日韩欧美| 亚洲激情视频在线观看| 国产精品爱啪在线线免费观看| 午夜久久黄色| 亚洲国产精品成人va在线观看| 欧美精品七区| 久久精品成人一区二区三区| 亚洲人体1000| 国产一区二区三区观看| 欧美国产在线电影| 欧美在线影院在线视频| 亚洲精品久久在线| 狠狠色综合网| 国产精品激情电影| 免费亚洲婷婷| 久久成人在线| 亚洲伊人一本大道中文字幕| 亚洲国产精品久久久久婷婷老年 | 久久精品在线观看| 99精品久久| 在线观看一区| 国产午夜精品久久久久久免费视| 欧美精品日韩三级| 蜜桃av综合| 久久人91精品久久久久久不卡| 亚洲在线黄色| 亚洲天堂成人在线观看| 亚洲欧洲在线免费| 在线成人性视频| 国产一区在线视频| 国产精品视频导航| 国产精品高清网站| 欧美日韩免费在线观看| 欧美电影免费观看大全| 久久九九全国免费精品观看| 先锋亚洲精品| 欧美一区二区三区视频| 亚洲免费视频网站| 亚洲一区日本| 亚洲男同1069视频| 亚洲一区二区成人| 亚洲男人的天堂在线观看 | 亚洲激情视频| 亚洲第一网站免费视频| 精品动漫3d一区二区三区免费| 国产精品夜夜嗨| 国产精品天天摸av网| 国产精品xvideos88| 欧美视频一二三区| 欧美午夜不卡视频| 国产精品久久久久久久久免费桃花| 欧美日韩一区二区三区在线观看免| 欧美日韩精品免费观看视频完整| 欧美激情1区2区3区| 欧美精品aa| 欧美午夜一区二区福利视频| 国产精品国产三级国产普通话99 | 亚洲视频观看| 亚洲欧美成人综合| 香蕉免费一区二区三区在线观看 | 欧美成人午夜激情| 欧美电影资源| 欧美日韩视频在线一区二区观看视频| 欧美人与禽猛交乱配视频| 欧美人与性禽动交情品| 欧美视频精品在线| 国产精品久久影院| 激情久久久久久久久久久久久久久久| 在线观看的日韩av| 亚洲美女视频| 欧美影片第一页| 免费成人毛片| 国产精品久久久久秋霞鲁丝| 国产一区二区三区在线观看免费| 亚洲成人在线视频播放| 99国产精品久久久久久久久久 | 久久精品视频在线播放| 欧美国产精品| 国产精品毛片a∨一区二区三区|国 | 亚洲国产mv| 在线亚洲一区| 久久伊人一区二区| 国产精品扒开腿做爽爽爽软件 | 在线免费观看欧美| 一区二区三区福利| 久久野战av| 国产精品久久99| 亚洲国产成人久久综合| 午夜老司机精品| 欧美日韩国产小视频| 好吊色欧美一区二区三区视频| 9色porny自拍视频一区二区| 久久精品毛片| 国产精品私拍pans大尺度在线| 91久久久在线| 久久女同互慰一区二区三区| 国产精品男人爽免费视频1| 在线观看国产精品网站| 午夜精品福利一区二区蜜股av| 欧美精品福利视频| 亚洲国产天堂久久综合网| 久久精品国产欧美激情| 国产精品盗摄久久久| 亚洲精品影院在线观看| 美女精品国产| 亚洲大胆av| 久久久久久久欧美精品| 国产精品久久久久久久午夜 | 亚洲啪啪91| 久久久午夜电影| 国产日产欧美精品| 亚洲在线网站| 欧美日韩免费精品| 亚洲人成人一区二区三区| 巨乳诱惑日韩免费av| 国内久久精品| 久久人人爽人人爽| 一区二区三区在线免费观看| 久久激情视频| 国产精品久久久久久超碰| 亚洲日本在线视频观看| 欧美电影打屁股sp| 亚洲日本中文字幕区| 欧美成人午夜免费视在线看片 | 国产亚洲人成a一在线v站| 亚洲自拍偷拍一区| 国产精品xnxxcom| 亚洲新中文字幕| 国产精品久久一级| 午夜天堂精品久久久久| 国产精品普通话对白| 性欧美长视频| 激情视频一区二区| 欧美www视频在线观看| 亚洲青涩在线| 欧美日韩亚洲视频| 亚洲欧美一区二区激情| 国产日韩欧美不卡| 久久久久国产精品麻豆ai换脸| 狠狠做深爱婷婷久久综合一区| 久久国产精品久久久久久| 狠狠入ady亚洲精品| 老司机成人网| 亚洲狼人综合| 国产精品亚洲成人| 久久精品视频一| 最新国产精品拍自在线播放| 欧美日韩国产123区| 亚洲欧美激情一区| 影音先锋在线一区| 欧美日韩精品一区二区在线播放| 亚洲一区三区电影在线观看| 国产一区二区三区久久悠悠色av | 欧美精品久久久久久久免费观看| 亚洲九九九在线观看| 国产精品伦一区| 久久欧美中文字幕| 一区二区激情小说| 国产一区清纯| 欧美日韩一区二区三区在线视频| 亚洲欧美中文在线视频| 亚洲高清在线观看一区| 国产精品亚洲综合色区韩国| 美日韩精品视频| 午夜精品婷婷| 亚洲精品自在在线观看| 国产亚洲欧美日韩在线一区 | 鲁鲁狠狠狠7777一区二区| 一区二区三区福利| 极品少妇一区二区三区| 欧美日韩亚洲另类| 噜噜噜在线观看免费视频日韩| 亚洲天堂av在线免费观看| 亚洲国产成人一区| 国产一区二区三区的电影 | 亚洲在线视频免费观看| 樱桃国产成人精品视频| 国产精品久久久久久久久久久久| 老**午夜毛片一区二区三区| 亚洲一二三区精品| 亚洲人成人77777线观看| 国产日韩欧美制服另类| 欧美午夜无遮挡| 欧美精品成人一区二区在线观看| 久久精品一区四区| 午夜在线观看免费一区| 亚洲一区二区三区成人在线视频精品 | 亚洲伊人伊色伊影伊综合网| 亚洲精品国久久99热| 在线日韩欧美视频| 伊人久久大香线|