隨著半導體工藝的飛速發展和芯片設計水平的不斷進步,ARM微處理器的性能得到大幅度地提高,同時其芯片的價格也在不斷下降,嵌入式系統以其獨有的優勢,己經廣泛地滲透到科學研究和日常生活的各個方面。 本文以ARM7 LPC2132處理器為核心,結合蓋革一彌勒計數管對Time-To-Count輻射測量方法進行研究。ARM結構是基于精簡指令集計算機(RISC)原理而設計的,其指令集和相關的譯碼機制比復雜指令集計算機要簡單得多,使用一個小的、廉價的ARM微處理器就可實現很高的指令吞吐量和實時的中斷響應。基于ARM7TDMI-S核的LPC2132微處理器,其工作頻率可達到60MHz,這對于Time-To-Count技術是非常有利的,而且利用LPC2132芯片的定時/計數器引腳捕獲功能,可以直接讀取TC中的計數值,也就是說不再需要調用中斷函數讀取TC值,從而大大降低了計數前雜質時間。本文是在我師兄呂軍的《Time-To-Count測量方法初步研究》基礎上,使用了高速的ARM芯片,對基于MCS-51的Time-To-Count輻射測量系統進行了改進,進一步論證了采用高速ARM處理器芯片可以極大的提高G-M計數器的測量范圍與測量精度。 首先,討論了傳統的蓋革-彌勒計數管探測射線強度的方法,并指出傳統的脈沖測量方法的不足。然后討論了什么是Time-To-Count測量方法,對Time-To-Count測量方法的理論基礎進行分析。指出Time-To-Count方法與傳統的脈沖計數方法的區別,以及采用Time-To-Count方法進行輻射測量的可行性。 接著,詳細論述基于ARM7 LPC2132處理器的Time-To-Count輻射測量儀的原理、功能、特點以及輻射測量儀的各部分接口電路設計及相關程序的編制。 最后得出結論,通過高速32位ARM處理器的使用,Time-To-Count輻射測量儀的精度和量程均得到很大的提高,對于Y射線總量測量,使用了ARM處理器的Time-To-Count輻射測量儀的量程約為20 u R/h到1R/h,數據線性程度也比以前的Time-To-CotJnt輻射測量儀要好。所以在使用Time-To-Count方法進行的輻射測量時,如何減少雜質時間以及如何提高計數前時間的測量精度,是決定Time-To-Count輻射測量儀性能的關鍵因素。實驗用三只相同型號的J33G-M計數管分別作為探測元件,在100U R/h到lR/h的輻射場中進行試驗.每個測量點測量5次取平均,得出隨著照射量率的增大,輻射強度R的測量值偏小且與輻射真實值之間的誤差也隨之增大。如果將測量誤差限定在10%的范圍內,則此儀器的量程范圍為20 u R/h至1R/h,量程跨度近六個數量級。而用J33型G-M計數管作常規的脈沖測量,量程范圍約為50 u R/h到5000 u R/h,充分體現了運用Time-To-Count方法測量輻射強度的優越性,也從另一個角度反應了隨著計數前時間的逐漸減小,雜質時間在其中的比重越來越大,對測量結果的影響也就越來越嚴重,盡可能的減小雜質時間在Time-To-Count方法輻射測量特別是測量高強度輻射中是關鍵的。筆者用示波器測出此輻射儀器的雜質時間約為6.5 u S,所以在計算定時器值的時候減去這個雜質時間,可以增加計數前時間的精確度。通過實驗得出,在標定儀器的K值時,應該在照射量率較低的條件下行,而測得的計數前時間是否精確則需要在照射量率較高的條件下通過儀器標定來檢驗。這是因為在照射量率較低時,計數前時間較大,雜質時間對測量結果的影響不明顯,數據線斜率較穩定,適宜于確定標定系數K值,而在照射量率較高時,計數前時間很小,雜質時間對測量結果的影響較大,可以明顯的在數據線上反映出來,從而可以很好的反應出儀器的性能與量程。實驗證明了Time-To-Count測量方法中最為關鍵的環節就是如何對計數前時間進行精確測量。經過對大量實驗數據的分析,得到計數前時間中的雜質時間可分為硬件雜質時間和軟件雜質時間,并以軟件雜質時間為主,通過對程序進行合理優化,軟件雜質時間可以通過程序的改進而減少,甚至可以用數學補償的方法來抵消,從而可以得到比較精確的計數前時間,以此得到較精確的輻射強度值。對于本輻射儀,用戶可以選擇不同的工作模式來進行測量,當輻射場較弱時,通常采用規定次數測量的方式,在輻射場較強時,應該選用定時測量的方式。因為,當輻射場較弱時,如果用規定次數測量的方式,會浪費很多時間來采集足夠的脈沖信號。當輻射場較強時,由于輻射粒子很多,產生脈沖的頻率就很高,規定次數的測量會加大測量誤差,當選用定時測量的方式時,由于時間的相對加長,所以記錄的粒子數就相對的增加,從而提高儀器的測量精度。通過調研國內外先進核輻射測量儀器的發展現狀,了解到了目前最新的核輻射總量測量技術一Time-To-Count理論及其應用情況。論證了該新技術的理論原理,根據此原理,結合高速處理器ARM7 LPC2132,對以G-計數管為探測元件的Time-To-Count輻射測量儀進行設計。論文以實驗的方法論證了Time-To-Count原理測量核輻射方法的科學性,該輻射儀的量程和精度均優于以前以脈沖計數為基礎理論的MCS-51核輻射測量儀。該輻射儀具有量程寬、精度高、易操作、用戶界面友好等優點。用戶可以定期的對儀器的標定,來減小由于電子元件的老化對低儀器性能參數造成的影響,通過Time-To-Count測量方法的使用,可以極大拓寬G-M計數管的量程。就儀器中使用的J33型G-M計數管而言,G-M計數管廠家參考線性測量范圍約為50 u R/h到5000 u R/h,而用了Time-To-Count測量方法后,結合高速微處理器ARM7 LPC2132,此核輻射測量儀的量程為20 u R/h至1R/h。在允許的誤差范圍內,核輻射儀的量程比以前基于MCS-51的輻射儀提高了近200倍,而且精度也比傳統的脈沖計數方法要高,測量結果的線性程度也比傳統的方法要好。G-M計數管的使用壽命被大大延長。 綜上所述,本文取得了如下成果:對國內外Time-To-Count方法的研究現狀進行分析,指出了Time-To-Count測量方法的基本原理,并對Time-T0-Count方法理論進行了分析,推導出了計數前時間和兩個相鄰輻射粒子時間間隔之間的關系,從數學的角度論證了Time-To-Count方法的科學性。詳細說明了基于ARM 7 LPC2132的Time-To-Count輻射測量儀的硬件設計、軟件編程的過程,通過高速微處理芯片LPC2132的使用,成功完成了對基于MCS-51單片機的Time-To-Count測量儀的改進。改進后的輻射儀器具有量程寬、精度高、易操作、用戶界面友好等特點。本論文根據實驗結果總結出了Time-To-Count技術中的幾點關鍵因素,如:處理器的頻率、計數前時間、雜質時間、采樣次數和測量時間等,重點分析了雜質時間的組成以及引入雜質時間的主要因素等,對國內核輻射測量儀的研究具有一定的指導意義。
標簽: TimeToCount ARM 輻射測量儀
上傳時間: 2013-06-24
上傳用戶:pinksun9
T-Kernel作為一種嵌入式操作系統,由于實時性和開源性,在嵌入式操作系統領域中的應用越來越廣泛。ARM是一款比較好的微處理器,T-Kernel在ARM上的應用研究基本上是空白,所以結合兩者進行研究促進T-Kernel在國內嵌入式領域的發展。同時,T-Kernel內部調度機制存在著優先級反轉缺陷,優先級反向使得高優先級任務的執行時間無法預測,增加了實時系統的不確定性。早期的解決協議較好地解決了優先級反轉問題,但同時也存在著自身不足之處。 針對T-Kernel存在的缺陷,在深入研究相關協議的基礎上,本論文提出了一種新的改進的優先級繼承協議。該協議設置超時保護機制,避免任務在獲取信號量時長時間的阻塞,結合Havender提出的“有序資源使用法”防止死鎖發生,給出該協議的分析過程,并把該協議結合到T-Kernel中。在這個基礎之上,建立研究開發平臺;針對硬件設備,研究引導程序的執行原理,實現系統的引導程序;構建T-Kennel內核;移植內核到開發板;最后對T-Kernel的啟動過程進行了詳細的分析。 T-Kernel在ARM上的移植研究,為嵌入式系統開發的提供了一種開發流程,同時對于T-Kernel的啟動過程的分析,為以后的應用程序開發提供了一個接口;對于T-Kernel存在的優先級反轉問題的解決,可以改進T-Kernel的實時性和靈活性,同時為實時系統的性能改進提供了參考。
上傳時間: 2013-04-24
上傳用戶:shangdafreya
心血管系統疾病是現今世界上發病率和死亡率最高的疾病之一。T波交替(T-wavealtemans,TWA)作為一種非穩態的心電變異性現象,是指心電T波段振幅、形態甚至極性逐拍交替變化。大量研究表明,TWA與室性心律失常、心臟性猝死等有直接密切的關系,已成為一種無創獨立性預測指標。隨著數字信號處理技術和計算機技術的迅速發展,微伏級的TWA已經可以被檢出,并且精度越來越高。本文以T波交替檢測為中心,基于ARM給出了T波交替檢測技術原理性樣機的硬件及軟件,實現實時監護的目的。 在TWA檢測研究中,需要對心電信號進行預處理,即信號去噪和特征點檢測。小波分析以其多分辨率的特性和表征時頻兩域信號局部特征的能力成為我們選取的心電信號自動分析手段。文中采用小波變換將原始心電信號分解為不同頻段的細節信號,根據三種主要噪聲的不同能量分布,采用自適應閾值和軟硬閾值折衷處理策略用閾值濾波方法對原始信號進行去噪處理:同時基于心電信號的特征點R峰對應于Mexican-hat小波變換的極值點,因此我們使用Mexican-hat小波檢測R峰,通過附加檢測方案確保了位置的準確性,并根據需要提出了T波矩陣提取方法。 隨后文章介紹了T波交替的產生機理及研究進展,分別從臨床應用和檢測方法上展現了目前TWA的發展進程,并利用了譜分析法、相關分析法和移動平均修正算法分別從時域和頻域對一些樣本數據進行T波交替檢測。在檢測中譜分析法抗噪能力較強,但作為一種頻域檢測方法,無法檢測非穩態TWA信號,而相關分析法受呼吸、噪聲影響較大,數據要求較高,因此可以在譜分析檢測為陽性TWA基礎上,再對信號進行相關分析,從而克服自身算法缺陷,確定交替幅度和時間段。最后對影響檢測結果的因素進行討論研究,從而降低檢測誤差。 文章還設計了T波交替檢測技術原理性樣機的關鍵部分電路和軟件框架。硬件部分圍繞ARM核的Samsung S3C44BOX為核心,設計了該樣機的關鍵電路,包括采集模塊、數據處理模塊(外部存儲電路、通信接口電路等)。其中在采集模塊中針對心電信號是微弱信號并且干擾大的特點,采用了具有高共模抑制比和高輸入阻抗的分級放大電路,有效的提取了信號分量:A/D轉換電路保證了信號量化的高精度。利用USB接口芯片和刪內部異步串行通訊實現系統與外界聯系。系統軟件中首先介紹了系統的軟件開發環境,然后給出了心電信號分析及處理程序設計流程圖及實現,使它們共同完成系統的軟件監護功能。
上傳時間: 2013-07-27
上傳用戶:familiarsmile
SystemView的庫資源十分豐富,包括含若干圖標的基本庫(Main Library)及專業庫(Optional Library),基本庫中包括多種信號源、接收器、加法器、乘法器,各種函數運算器等;專業庫有通訊(Communication)、邏輯(Logic)、數字信號處理(DSP)、射頻/模擬(RF/Analog)等;它們特別適合于現代通信系統的設計、仿真和方案論證,尤其適合于無線電話、無繩電話、尋呼機、調制解調器、衛星通訊等通信系統;并可進行各種系統時域和頻域分析、譜分析,及對各種邏輯電路、射頻/模擬電路(混合器、放大器、RLC電路、運放電路等)進行理論分析和失真分析。 System View能自動執行系統連接檢查,給出連接錯誤信息或尚懸空的待連接端信息,通知用戶連接出錯并通過顯示指出出錯的圖標。這個特點對用戶系統的診斷是十分有效的。 System View的另一重要特點是它可以從各種不同角度、以不同方式,按要求設計多種濾波器,并可自動完成濾波器各指標—如幅頻特性(伯特圖)、傳遞函數、根軌跡圖等之間的轉換。 在系統設計和仿真分析方面,System View還提供了一個真實而靈活的窗口用以檢查、分析系統波形。在窗口內,可以通過鼠標方便地控制內部數據的圖形放大、縮小、滾動等。另外,分析窗中還帶有一個功能強大的“接收計算器”,可以完成對仿真運行結果的各種運算、譜分析、濾波。 System View還具有與外部文件的接口,可直接獲得并處理輸入/輸出數據。提供了與編程語言VC++或仿真工具Matlab的接口,可以很方便的調用其函數。還具備與硬件設計的接口:與Xilinx公司的軟件Core Generator配套,可以將System View系統中的部分器件生成下載FPGA芯片所需的數據文件;另外,System View還有與DSP芯片設計的接口,可以將其DSP庫中的部分器件生成DSP芯片編程的C語言源代碼。
標簽: SYSTEMVIEW 教材
上傳時間: 2013-04-24
上傳用戶:doudouzdz
車輛姿態是車輛控制所需的重要參數,其測量方法、測量精度與測量系統的性能和成本密切相關。隨著微處理器技術與新型傳感器技術的發展,利用加速度計、磁阻傳感器和ARM微處理器構成基于地球磁場和重力場的捷聯式姿態測量系統,已成為許多載體姿態測量的首選。同時姿態測量系統住地理勘探、石油甲臺鉆井和機器人控制方血也有著廣泛的應用。 本文研究設計了一款基于ARM處理器的姿態測量系統,在保證體積、成本和實時性的前提下,完成載體姿態角的準確測量。采用Honeywell公刊的3軸磁阻傳感器HMC1021/1022和ADI公司的2軸加速度計ADXL202以及S3C44BOX ARM7微處理器構建捷聯式姿態測量系統。磁阻傳感器和加速度計分別感應地球磁場和重力場信號,微處理器對檢測到的信號進行處理和誤差補償后,解算出的姿念角,最后由LCD顯示或者通過串行通訊接口輸出到上位機,實現姿態角的實時準確測量。 本文詳細介紹了基于地球磁場和重力場信號進行姿態測量的原理,推導了方向角、俯仰角和橫滾角求解的數學模型。完成了姿態測量系統硬件電路的設計與調試,實現了包括:uC/OS-Ⅱ操作系統的移植、加速度數據采集、地球磁場數據采集和姿態角解算等系統軟件的設計,最后對系統測量結果給出了誤差分析,添加了數字濾波、橢圓效應校正等算法來補償誤差,從而有效提高了系統測量精度。
上傳時間: 2013-07-20
上傳用戶:jkhjkh1982
地鐵信號設備中輸入輸出設備是信號邏輯和現場設備之間的接口,有著四高(高安全,高可靠,高可維護,高可用)要求,目前信號系統廠家的傳統做法是整個信號系統產品由一家公司來完成,可是隨著技算機技術的快速發展,邏輯部份目前已可以采用通用COTS產品,而輸入輸出部分還是需要各個信號廠家自己設計和生產,因此設計出一款通用型的輸入輸出控制器已成地鐵行業的發展方向。 為了滿足以上要求,本文從實際應用角度出發,使信號系統的產品更加的開放透明,設計出基于ARM的地鐵用安全型的智能I/O,從而使信號系統設計可以方便地和現場信號設備接口。 在硬件上采用冗余設計,以ARM為主處理器,整個系統無單點硬件故障,采集部分采用動態異或輸入設計,驅動部分采用安全驅動設計。 基于ARM的地鐵用安全智能I/O嚴格遵循歐洲鐵路信號產品的標準,使系統的安全性,可靠性,可用性和可維護性有了充分的保障。 本文主要介紹了地鐵用安全型智能I/O控制器的設計和實現,包括設計思想,具體實施,硬件和軟件的設計等。
上傳時間: 2013-06-12
上傳用戶:ljthhhhhh123
隨著生產自動化要求的不斷提高,控制技術和微型計算機技術的不斷發展,智能記錄儀已日益廣泛地應用在工業過程領域,并占據了越來越高的地位。近年來,新的應用也對智能記錄儀的設計提出了更高的要求。 嵌入式系統因其體積小、性能好、功耗低、可靠性高等優點,其已經在各種記錄儀表的開發與設計等領域中得到廣泛的應用。為了改善工業現場傳統獲取數據費時、費力且數據不夠及時準確的缺點,本課題基于嵌入式的技術,構建了一個由32位的嵌入式微處理器S3C24lO和實時操作系統IAnux組成的平臺,并對其進行了開發研究,設計并實現了針對工業過程數據處理的一種新型的記錄系統。 本文研究了無紙記錄儀通用開發方法,設計了系統結構、功能和性能設計指標。該系統以三星公司生產的S3C2410(ARM)微控制器為核心,配置大容量Flash存貯器、實時時鐘等,通過8個信號輸入通道,可配接熱電偶、熱電阻以及標準的電壓/電流信號,經16位采樣送ARM處理后,按設定要求完成信號監測、數據記錄和柱狀圖、曲線顯示、異常數據報警等無紙記錄儀的功能,以及通過RS232通信接口與其它系統進行數據通信;在系統軟件設計方面,采用結構化、模塊化方法,結合硬件配置設計了數據采集、檢測信號處理、數據存取、鍵盤操作功能模塊以及柱狀圖、曲線等圖形顯示功能函數,從而使具有了模塊化擴展功能。試驗表明了該系統對數據進行了準確、可靠的的采集與處理,較好地滿足了工業現場的需求。 本課題是數據記錄系統在工業現場數據采集、處理領域中的一次成功嘗試。在實際應用中,該系統凸顯出強大的功能、良好的靈活性。實踐證明本系統是一種優秀的解決方案,能夠高效的實現各種測控任務。
上傳時間: 2013-04-24
上傳用戶:trepb001
隨著嵌入式技術的發展,ARM處理器以其獨特的優勢在計算機、電子和通信的各個領域得到廣泛應用,將網絡技術、控制技術和視頻監控技術相融合,在更大程度上促進了家庭生活的信息化和自動化。系統采用先進的ARM處理器作為控制平臺,與使用C51單片機相比,提高了性能,縮短了開發周期;與使用傳統的PC機相比,兼顧了系統功能,又節約了成本,在家庭自動化領域具有較好的理論價值和廣闊的應用前景。 本文在分析國內外家庭自動化發展現狀的基礎上,采用先進的ARM技術,給出了多模式網絡通信方案,解決了家庭自動化系統對不同通信網絡的兼容性問題,在公用電話網語音通信中,提出了通信狀態機模型,討論了電話按鍵檢測和超時無選擇的問題,對語音處理技術的實現進行了研究;在無線網絡通信中,通過短消息的發送和接收,實現了遠程用戶和系統之間的信號傳輸,對系統無線GPRS通信的實現進行了技術研究;在遠程圖像監控的實現中,給出了單幀圖像采集的實現方法,對C/S模式下遠程監控技術進行了研究;為實現系統與終端之間的信號傳輸,給出了家庭內部控制網絡接口設計方案,實現了家電設備控制和自動報警功能,在系統安全問題方面,給出了系統身份認證的實現方法。在此基礎上,構建了一個低成本、高性能、高可靠性的家庭自動化系統。
上傳時間: 2013-06-21
上傳用戶:yy307115118
現代噴氣織機以其高速、高性能等優勢,占據了無梭織機的大部分市場,并成為最有發展前景的一種織機。送經、卷取機構是織機控制系統的重要組成部分,其對經紗張力的控制精度已成為評定織機質量的重要技術指標。因此,提高和改善噴氣織機的電子送經和卷取控制系統的性能非常必要,而且,開發具有高速、高精度的獨立電子送經和卷取控制模塊具有廣闊的應用前景。 本課題研究開發了一款獨立的電子送經和卷取控制模塊,通過人機界面或CAN通訊對該控制系統所需參數進行設置,使其可以根據參數設置應用于不同型號的噴氣織機。通過對系統的控制分析,本課題主要從硬件電路設計、軟件控制及張力控制算法三個方面進行研究。 首先,通過對噴氣織機的性能要求及控制器結構與性能的綜合考慮,系統采用以高速ARM7TDMI為內核的低功耗微處理器LPC2294作為系統控制器,該控制器不僅速度快、性能穩定,而且其豐富的外圍模塊大大簡化了硬件電路的設計。硬件電路設計采用模塊化設計方法,主要功能模塊包括嵌入式最小系統模塊、主軸編碼器采集模塊、張力采集模塊、電機控制模塊、通訊模塊、人機界面模塊、輸入輸出信號模塊等。根據系統需要,對各個模塊的控制器件進行選取,并設計出各個模塊的接口電路。最后,為了提高系統的穩定性和可靠性,在硬件電路設計中采取了隔離、去耦等硬件抗干擾措施。 在軟件設計方面,系統采用嵌入式實時操作系統μC/OS-II,便于系統升級和維護。在系統硬件平臺的基礎上,根據設計要求對操作系統內核進行剪裁和移植,并對系統時鐘節拍進行修改。結合硬件電路及系統控制要求,對系統啟動代碼進行修改;并根據系統對各個功能模塊控制的時效性要求,對系統任務進行合理規劃。為了說明系統采用該RTOS的可行性,對實時性要求最高的張力采集任務進行了實時性分析。對CAN通訊協議進行制定和編程實現,并對I2C、CAN和LCD驅動程序進行開發,另外,對每個任務的功能及控制流程和任務間及任務與中斷間的信息通訊進行了說明。系統在軟件方面也采用了一定的抗干擾技術,對硬件抗干擾進行補充。 最后,針對經紗張力的非線性和滯后性等復雜特性,對張力調節采用模糊參數自整定PID控制算法,設計出張力模糊參數自整定PID控制器。并在Matlab及Simulink工具下,對PID控制器下的張力算法及模糊參數自整定PID控制器下的張力算法進行仿真研究。而且對張力模糊PID控制算法在LPC2294中的實現進行了說明。關鍵詞:ARM; μC/OS-II;噴氣織機;送經卷取;模糊PID
上傳時間: 2013-06-11
上傳用戶:ivan-mtk
經濟的快速發展使得人們越來越注重生活質量,對于有害氣體的檢測成為人們的迫切要求,我國氣敏傳感器發展迅速,但由于氣敏傳感器的高阻值特性及接口電路復雜等原因,氣敏傳感器測量裝置發展緩慢。在了解氣敏傳感器的氣敏機理及氣敏傳感器的工作原理的前提下,設計了一種新型的氣體濃度測量裝置,并將采集到的信號處理后通過無線傳輸設備傳送。該裝置以ARM7為內核的LPC2131 作為微處理器,利用其強大的數據計算處理能力及控制能力,設計出了顯示氣體濃度值的測量電路。此外由于因LPC2131 內部集成了多種硬件電路接口,有效地降低了成本,減小了裝置體積。 在無線傳輸部分,采用挪威Nordic公司的單片射頻收發器nRF403,nRF403工作在433或315MHz國際上通用的ISM頻段,雙工作頻段可以自由切換,FSK 調制解調,采用直接數字合成DSS和鎖相環穩頻PLL 進行頻率合成,頻率穩定性好,發射數據時無方向性要求,在高速移動和振動等情況有抗干擾能力。本測量裝置的設計主要包括硬件和軟件兩大部分。硬件部分由四部分組成:數據采集電路、ARM系統模塊電路設計、無線收發電路模塊、顯示模塊組成。軟件部分的設計包括:通道選擇程序設計、A/D轉換程序設計、信號處理程序(算法)、無線收發程序、液晶模塊程序設計、以及PC端應用程序設計。經過實際的測量,本裝置可對外界氣體濃度進行準確的測量,精度保持誤差在1.5%以內。本裝置具有高靈敏度、小型、簡單、低耗等優點。
上傳時間: 2013-04-24
上傳用戶:17826829386