永磁同步電機(PMSM)是一種性能優越、應用領域廣闊的電機,其傳統的理論分析與設計方法已比較成熟。它的進一步推廣應用,在很大程度上有賴于對控制策略的研究。實踐中,使用通用變壓變頻(VVVF)變頻器來驅動沒有阻尼繞組的永磁同步電動機開環運行時,有時電機的運行頻率超過某一頻率,系統就會變得不穩定,甚至導致系統失步。本文研究了無位置傳感器的永磁同步電機的速度控制問題。 論文提出了一種將推廣卡爾曼濾波(EKF)原理應用于永磁同步電機無位置傳感器調速系統的方法。對永磁同步電機的數學模型和卡爾曼濾波原理作了詳細的分析,在dq轉子同步坐標系中應用推廣卡爾曼濾波算法,對永磁同步電機的轉角和轉速進行實時在線估計。所選取的濾波算法只需測量電流和逆變器直流母線電壓,具有不改造電機、可靠性高和經濟耐用的優點。利用在線估計出的轉速和電流實現轉速電流雙閉環的永磁同步電機矢量控制。同時還提出了基于磁飽和原理的永磁轉子初始位置的檢測方法。針對轉子磁場定向方式及矢量控制方案,采用了空間矢量脈寬調制方法對系統進行控制,此方法可以輸出任意給定位置的電壓矢量,在不增加功率管開關頻率和不增加系統復雜性的前提下,明顯提高電機的調速性能。 在Matlab6.5環境下進行的系統仿真實驗表明,所提出的位置估計算法和控制方法具有優良的轉角跟蹤特性和速度控制性能,同時系統具有較強的抗負載擾動性能和較好的魯棒性。實驗結果表明本文的方法達到了預期的效果。
標簽: 卡爾曼濾波 永磁同步電機 無位置傳感器 控制
上傳時間: 2013-04-24
上傳用戶:huangld
介紹了基于DSP 的單相全橋逆變器數字控制系統。詳細論述了利用數字信號處理器TMS320LF2407 產生SPWM 波形和實現雙閉環PI 控制的算法,并給出了其實現原理及軟件流程。針對同相供電
標簽: SPWM DSP 優化算法
上傳時間: 2013-05-19
上傳用戶:sammi
三相spwm信號是由高頻載波和三相調 制波比較而得的,三相svpwm信號也可理解為由高頻載波和三相調制波比較而得,區別是前者的三相調制波是三相對稱的正弦波,后者的三相調制波是三相對稱的馬鞍形波,馬鞍形波由正弦波和一定幅值的三次諧波復合而成。但令人回味的是,svpwm的最初出現和發展卻和以上思路大相徑庭,其完全從空間矢量的角度出發,后來人們才發現svpwm和spwm的以上淵源[1]。至今svpwm已在三相或多相逆變器中得以廣泛應用,其原因有兩個,一是采用svpwm的逆變器輸出相電壓中的基波含量高于采用spwm的逆變器[2][3],二是dsp的快速運算能力可以實時計算開關時間。但在實際應用svpwm時,往往對以下問題感到疑惑:svpwm算法的推導、開關向量的選擇、dsp的實現、逆變器輸出相電壓有效值的大小。本文的內容將有助這些疑惑的解決,更靈活地應用svpwm算法。
標簽: PWM 空間矢量 算法
上傳時間: 2013-06-05
上傳用戶:851197153
目前,在伺服控制系統中,通常采用三相電壓型逆變器來驅動伺服電機。橋式電路中為避免同一橋臂開關器件的直通現象, 必須插入死區時間。死區時間和開關器件的非理想特性往往會造成輸出電壓、電流的畸變,從而造成電機轉矩的脈動,影響系統工作性能。因此,必須對電壓型逆變器中的死區效應進行補償。
標簽: 全數字 伺服系統 死區
上傳用戶:萌萌噠小森森
·摘要: 基于DSP的在線式UPS智能監測系統,采用TMS320LF2407A實現.其ADC模塊采集UPS現場電壓、電流、負載等信息.EV捕獲單元捕獲市電,逆變器的頻率.SCI負責PC機與UPS現場的數據通訊,傳送UPS運行情況及參數.帶觸摸屏的NS320240A實現UPS現場實時監測.并用EEPROM保存記錄,由蜂鳴器對異常報警.
標簽: DSP UPS 智能監測
上傳時間: 2013-07-01
上傳用戶:VRMMO
·摘要: 采用DSP處理器實現永磁同步電機變頻調速系統.該系統由主電路、控制和輔助電路構成.主電路中逆變器采用IGBT功率模塊.控制電路以TMS320F240芯片為核心,將系統控制、通訊、顯示與保護,系統參數、故障等信息保存在芯片存貯器中.輔助電路由輔助開關電源、驅動及電流電壓檢測電路組成.系統初始化后進入由鍵盤、顯示、SCI、故障處理等模塊組成的后臺程序.而前臺程序主要進行內外兩環的數
標簽: DSP 永磁同步電機 變頻調速系統 仿真
上傳用戶:laozhanshi111
講LCD內部電路組成,比較詳細。有電源板、主板、panel、高壓逆變器等知識
標簽: LCD
上傳時間: 2013-08-04
上傳用戶:lzm033
輸入12V 輸出230V 50HZ 過壓保護 欠壓保護 過載保護
標簽: 逆變器 原理圖
上傳時間: 2013-06-02
上傳用戶:wlcaption
LCL濾波的光伏并網逆變器阻尼影響因素分析
標簽: 光伏并網
上傳用戶:skhlm
半導體的產品很多,應用的場合非常廣泛,圖一是常見的幾種半導體元件外型。半導體元件一般是以接腳形式或外型來劃分類別,圖一中不同類別的英文縮寫名稱原文為 PDID:Plastic Dual Inline Package SOP:Small Outline Package SOJ:Small Outline J-Lead Package PLCC:Plastic Leaded Chip Carrier QFP:Quad Flat Package PGA:Pin Grid Array BGA:Ball Grid Array 雖然半導體元件的外型種類很多,在電路板上常用的組裝方式有二種,一種是插入電路板的銲孔或腳座,如PDIP、PGA,另一種是貼附在電路板表面的銲墊上,如SOP、SOJ、PLCC、QFP、BGA。 從半導體元件的外觀,只看到從包覆的膠體或陶瓷中伸出的接腳,而半導體元件真正的的核心,是包覆在膠體或陶瓷內一片非常小的晶片,透過伸出的接腳與外部做資訊傳輸。圖二是一片EPROM元件,從上方的玻璃窗可看到內部的晶片,圖三是以顯微鏡將內部的晶片放大,可以看到晶片以多條銲線連接四周的接腳,這些接腳向外延伸並穿出膠體,成為晶片與外界通訊的道路。請注意圖三中有一條銲線從中斷裂,那是使用不當引發過電流而燒毀,致使晶片失去功能,這也是一般晶片遭到損毀而失效的原因之一。 圖四是常見的LED,也就是發光二極體,其內部也是一顆晶片,圖五是以顯微鏡正視LED的頂端,可從透明的膠體中隱約的看到一片方型的晶片及一條金色的銲線,若以LED二支接腳的極性來做分別,晶片是貼附在負極的腳上,經由銲線連接正極的腳。當LED通過正向電流時,晶片會發光而使LED發亮,如圖六所示。 半導體元件的製作分成兩段的製造程序,前一段是先製造元件的核心─晶片,稱為晶圓製造;後一段是將晶中片加以封裝成最後產品,稱為IC封裝製程,又可細分成晶圓切割、黏晶、銲線、封膠、印字、剪切成型等加工步驟,在本章節中將簡介這兩段的製造程序。
標簽: 封裝 IC封裝 制程
上傳時間: 2014-01-20
上傳用戶:蒼山觀海
蟲蟲下載站版權所有 京ICP備2021023401號-1