亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

采樣率

  • 室內(nèi)線陣CCD交匯測量捕獲率分析

    針對室內(nèi)CCD交匯測量的試驗環(huán)境,通過添加輔助光源照明,在基于CCD立靶測量原理的條件下,分析了室內(nèi)立靶影響捕獲率的原因,并建立了室內(nèi)立靶的捕獲率模型。該模型能夠為室內(nèi)立靶測量系統(tǒng)的捕獲率計算和研究提供依據(jù)。同時,對立靶捕獲率進行了仿真分析,仿真結果表明,該系統(tǒng)的捕獲率能夠達到90%。

    標簽: CCD 線陣 測量

    上傳時間: 2013-10-17

    上傳用戶:13160677563

  • 時鐘分相技術應用

    摘要: 介紹了時鐘分相技術并討論了時鐘分相技術在高速數(shù)字電路設計中的作用。 關鍵詞: 時鐘分相技術; 應用 中圖分類號: TN 79  文獻標識碼:A   文章編號: 025820934 (2000) 0620437203 時鐘是高速數(shù)字電路設計的關鍵技術之一, 系統(tǒng)時鐘的性能好壞, 直接影響了整個電路的 性能。尤其現(xiàn)代電子系統(tǒng)對性能的越來越高的要求, 迫使我們集中更多的注意力在更高頻率、 更高精度的時鐘設計上面。但隨著系統(tǒng)時鐘頻率的升高。我們的系統(tǒng)設計將面臨一系列的問 題。 1) 時鐘的快速電平切換將給電路帶來的串擾(Crosstalk) 和其他的噪聲。 2) 高速的時鐘對電路板的設計提出了更高的要求: 我們應引入傳輸線(T ransm ission L ine) 模型, 并在信號的匹配上有更多的考慮。 3) 在系統(tǒng)時鐘高于100MHz 的情況下, 應使用高速芯片來達到所需的速度, 如ECL 芯 片, 但這種芯片一般功耗很大, 再加上匹配電阻增加的功耗, 使整個系統(tǒng)所需要的電流增大, 發(fā) 熱量增多, 對系統(tǒng)的穩(wěn)定性和集成度有不利的影響。 4) 高頻時鐘相應的電磁輻射(EM I) 比較嚴重。 所以在高速數(shù)字系統(tǒng)設計中對高頻時鐘信號的處理應格外慎重, 盡量減少電路中高頻信 號的成分, 這里介紹一種很好的解決方法, 即利用時鐘分相技術, 以低頻的時鐘實現(xiàn)高頻的處 理。 1 時鐘分相技術 我們知道, 時鐘信號的一個周期按相位來分, 可以分為360°。所謂時鐘分相技術, 就是把 時鐘周期的多個相位都加以利用, 以達到更高的時間分辨。在通常的設計中, 我們只用到時鐘 的上升沿(0 相位) , 如果把時鐘的下降沿(180°相位) 也加以利用, 系統(tǒng)的時間分辨能力就可以 提高一倍(如圖1a 所示)。同理, 將時鐘分為4 個相位(0°、90°、180°和270°) , 系統(tǒng)的時間分辨就 可以提高為原來的4 倍(如圖1b 所示)。 以前也有人嘗試過用專門的延遲線或邏輯門延時來達到時鐘分相的目的。用這種方法產(chǎn)生的相位差不夠準確, 而且引起的時間偏移(Skew ) 和抖動 (J itters) 比較大, 無法實現(xiàn)高精度的時間分辨。 近年來半導體技術的發(fā)展, 使高質(zhì)量的分相功能在一 片芯片內(nèi)實現(xiàn)成為可能, 如AMCC 公司的S4405, CY2 PRESS 公司的CY9901 和CY9911, 都是性能優(yōu)異的時鐘 芯片。這些芯片的出現(xiàn), 大大促進了時鐘分相技術在實際電 路中的應用。我們在這方面作了一些嘗試性的工作: 要獲得 良好的時間性能, 必須確保分相時鐘的Skew 和J itters 都 比較小。因此在我們的設計中, 通常用一個低頻、高精度的 晶體作為時鐘源, 將這個低頻時鐘通過一個鎖相環(huán)(PLL ) , 獲得一個較高頻率的、比較純凈的時鐘, 對這個時鐘進行分相, 就可獲得高穩(wěn)定、低抖動的分 相時鐘。 這部分電路在實際運用中獲得了很好的效果。下面以應用的實例加以說明。2 應用實例 2. 1 應用在接入網(wǎng)中 在通訊系統(tǒng)中, 由于要減少傳輸 上的硬件開銷, 一般以串行模式傳輸 圖3 時鐘分為4 個相位 數(shù)據(jù), 與其同步的時鐘信號并不傳輸。 但本地接收到數(shù)據(jù)時, 為了準確地獲取 數(shù)據(jù), 必須得到數(shù)據(jù)時鐘, 即要獲取與數(shù) 據(jù)同步的時鐘信號。在接入網(wǎng)中, 數(shù)據(jù)傳 輸?shù)慕Y構如圖2 所示。 數(shù)據(jù)以68MBös 的速率傳輸, 即每 個bit 占有14. 7ns 的寬度, 在每個數(shù)據(jù) 幀的開頭有一個用于同步檢測的頭部信息。我們要找到與它同步性好的時鐘信號, 一般時間 分辨應該達到1ö4 的時鐘周期。即14. 7ö 4≈ 3. 7ns, 這就是說, 系統(tǒng)時鐘頻率應在300MHz 以 上, 在這種頻率下, 我們必須使用ECL inp s 芯片(ECL inp s 是ECL 芯片系列中速度最快的, 其 典型門延遲為340p s) , 如前所述, 這樣對整個系統(tǒng)設計帶來很多的困擾。 我們在這里使用鎖相環(huán)和時鐘分相技術, 將一個16MHz 晶振作為時鐘源, 經(jīng)過鎖相環(huán) 89429 升頻得到68MHz 的時鐘, 再經(jīng)過分相芯片AMCCS4405 分成4 個相位, 如圖3 所示。 我們只要從4 個相位的68MHz 時鐘中選擇出與數(shù)據(jù)同步性最好的一個。選擇的依據(jù)是: 在每個數(shù)據(jù)幀的頭部(HEAD) 都有一個8bit 的KWD (KeyWord) (如圖1 所示) , 我們分別用 這4 個相位的時鐘去鎖存數(shù)據(jù), 如果經(jīng)某個時鐘鎖存后的數(shù)據(jù)在這個指定位置最先檢測出這 個KWD, 就認為下一相位的時鐘與數(shù)據(jù)的同步性最好(相關)。 根據(jù)這個判別原理, 我們設計了圖4 所示的時鐘分相選擇電路。 在板上通過鎖相環(huán)89429 和分相芯片S4405 獲得我們所要的68MHz 4 相時鐘: 用這4 個 時鐘分別將輸入數(shù)據(jù)進行移位, 將移位的數(shù)據(jù)與KWD 作比較, 若至少有7bit 符合, 則認為檢 出了KWD。將4 路相關器的結果經(jīng)過優(yōu)先判選控制邏輯, 即可輸出同步性最好的時鐘。這里, 我們運用AMCC 公司生產(chǎn)的 S4405 芯片, 對68MHz 的時鐘進行了4 分 相, 成功地實現(xiàn)了同步時鐘的獲取, 這部分 電路目前已實際地應用在某通訊系統(tǒng)的接 入網(wǎng)中。 2. 2 高速數(shù)據(jù)采集系統(tǒng)中的應用 高速、高精度的模擬- 數(shù)字變換 (ADC) 一直是高速數(shù)據(jù)采集系統(tǒng)的關鍵部 分。高速的ADC 價格昂貴, 而且系統(tǒng)設計 難度很高。以前就有人考慮使用多個低速 圖5 分相技術應用于采集系統(tǒng) ADC 和時鐘分相, 用以替代高速的ADC, 但由 于時鐘分相電路產(chǎn)生的相位不準確, 時鐘的 J itters 和Skew 比較大(如前述) , 容易產(chǎn)生較 大的孔徑晃動(Aperture J itters) , 無法達到很 好的時間分辨。 現(xiàn)在使用時鐘分相芯片, 我們可以把分相 技術應用在高速數(shù)據(jù)采集系統(tǒng)中: 以4 分相后 圖6 分相技術提高系統(tǒng)的數(shù)據(jù)采集率 的80MHz 采樣時鐘分別作為ADC 的 轉(zhuǎn)換時鐘, 對模擬信號進行采樣, 如圖5 所示。 在每一采集通道中, 輸入信號經(jīng)過 緩沖、調(diào)理, 送入ADC 進行模數(shù)轉(zhuǎn)換, 采集到的數(shù)據(jù)寫入存儲器(M EM )。各個 采集通道采集的是同一信號, 不過采樣 點依次相差90°相位。通過存儲器中的數(shù) 據(jù)重組, 可以使系統(tǒng)時鐘為80MHz 的采 集系統(tǒng)達到320MHz 數(shù)據(jù)采集率(如圖6 所示)。 3 總結 靈活地運用時鐘分相技術, 可以有效地用低頻時鐘實現(xiàn)相當于高頻時鐘的時間性能, 并 避免了高速數(shù)字電路設計中一些問題, 降低了系統(tǒng)設計的難度。

    標簽: 時鐘 分相 技術應用

    上傳時間: 2013-12-17

    上傳用戶:xg262122

  • 多路輸出開關電源交叉調(diào)整率

    多路輸出開關電源交叉調(diào)整率

    標簽: 多路輸出 交叉調(diào)整率 開關電源

    上傳時間: 2013-10-31

    上傳用戶:15070202241

  • 單片機系統(tǒng)中的率表算法

    單片機系統(tǒng)中的率表算法:近年來,國內(nèi)許多單位用MOTOROLA 68HC05C8A,68HC05C9A,68HC05L5,68HC05L16等單片機開發(fā)復費率表電表。電力部門也在為開發(fā)中的復費率電表制定一些規(guī)范。復費率電表中有一項功能要求,能給出所謂最大需置。

    標簽: 單片機系統(tǒng) 算法

    上傳時間: 2013-11-06

    上傳用戶:jackgao

  • PCB可測性設計布線規(guī)則之建議―從源頭改善可測率

    P C B 可測性設計布線規(guī)則之建議― ― 從源頭改善可測率PCB 設計除需考慮功能性與安全性等要求外,亦需考慮可生產(chǎn)與可測試。這里提供可測性設計建議供設計布線工程師參考。1. 每一個銅箔電路支點,至少需要一個可測試點。如無對應的測試點,將可導致與之相關的開短路不可檢出,并且與之相連的零件會因無測試點而不可測。2. 雙面治具會增加制作成本,且上針板的測試針定位準確度差。所以Layout 時應通過Via Hole 盡可能將測試點放置于同一面。這樣就只要做單面治具即可。3. 測試選點優(yōu)先級:A.測墊(Test Pad) B.通孔(Through Hole) C.零件腳(Component Lead) D.貫穿孔(Via Hole)(未Mask)。而對于零件腳,應以AI 零件腳及其它較細較短腳為優(yōu)先,較粗或較長的引腳接觸性誤判多。4. PCB 厚度至少要62mil(1.35mm),厚度少于此值之PCB 容易板彎變形,影響測點精準度,制作治具需特殊處理。5. 避免將測點置于SMT 之PAD 上,因SMT 零件會偏移,故不可靠,且易傷及零件。6. 避免使用過長零件腳(>170mil(4.3mm))或過大的孔(直徑>1.5mm)為測點。7. 對于電池(Battery)最好預留Jumper,在ICT 測試時能有效隔離電池的影響。8. 定位孔要求:(a) 定位孔(Tooling Hole)直徑最好為125mil(3.175mm)及其以上。(b) 每一片PCB 須有2 個定位孔和一個防呆孔(也可說成定位孔,用以預防將PCB反放而導致機器壓破板),且孔內(nèi)不能沾錫。(c) 選擇以對角線,距離最遠之2 孔為定位孔。(d) 各定位孔(含防呆孔)不應設計成中心對稱,即PCB 旋轉(zhuǎn)180 度角后仍能放入PCB,這樣,作業(yè)員易于反放而致機器壓破板)9. 測試點要求:(e) 兩測點或測點與預鉆孔之中心距不得小于50mil(1.27mm),否則有一測點無法植針。以大于100mil(2.54mm)為佳,其次是75mil(1.905mm)。(f) 測點應離其附近零件(位于同一面者)至少100mil,如為高于3mm 零件,則應至少間距120mil,方便治具制作。(g) 測點應平均分布于PCB 表面,避免局部密度過高,影響治具測試時測試針壓力平衡。(h) 測點直徑最好能不小于35mil(0.9mm),如在上針板,則最好不小于40mil(1.00mm),圓形、正方形均可。小于0.030”(30mil)之測點需額外加工,以導正目標。(i) 測點的Pad 及Via 不應有防焊漆(Solder Mask)。(j) 測點應離板邊或折邊至少100mil。(k) 錫點被實踐證實是最好的測試探針接觸點。因為錫的氧化物較輕且容易刺穿。以錫點作測試點,因接觸不良導致誤判的機會極少且可延長探針使用壽命。錫點尤其以PCB 光板制作時的噴錫點最佳。PCB 裸銅測點,高溫后已氧化,且其硬度高,所以探針接觸電阻變化而致測試誤判率很高。如果裸銅測點在SMT 時加上錫膏再經(jīng)回流焊固化為錫點,雖可大幅改善,但因助焊劑或吃錫不完全的緣故,仍會出現(xiàn)較多的接觸誤判。

    標簽: PCB 可測性設計 布線規(guī)則

    上傳時間: 2014-01-14

    上傳用戶:cylnpy

  • 基于FPGA實現(xiàn)固定倍率的圖像縮放

    基于FPGA硬件實現(xiàn)固定倍率的圖像縮放,將2維卷積運算分解成2次1維卷積運算,對輸入原始圖像像素先進行行方向的卷積,再進行列方向的卷積,從而得到輸出圖像像素。把圖像縮放過程設計為一個單元體的循環(huán)過程,在單元體內(nèi)部,事先計算出卷積系數(shù)。

    標簽: FPGA 倍率 圖像

    上傳時間: 2013-12-03

    上傳用戶:fudong911

  • 采用高速串行收發(fā)器Rocket I/O實現(xiàn)數(shù)據(jù)率為2.5 G

    摘要: 串行傳輸技術具有更高的傳輸速率和更低的設計成本, 已成為業(yè)界首選, 被廣泛應用于高速通信領域。提出了一種新的高速串行傳輸接口的設計方案, 改進了Aurora 協(xié)議數(shù)據(jù)幀格式定義的弊端, 并采用高速串行收發(fā)器Rocket I/O, 實現(xiàn)數(shù)據(jù)率為2.5 Gbps的高速串行傳輸。關鍵詞: 高速串行傳輸; Rocket I/O; Aurora 協(xié)議 為促使FPGA 芯片與串行傳輸技術更好地結合以滿足市場需求, Xilinx 公司適時推出了內(nèi)嵌高速串行收發(fā)器RocketI/O 的Virtex II Pro 系列FPGA 和可升級的小型鏈路層協(xié)議———Aurora 協(xié)議。Rocket I/O支持從622 Mbps 至3.125 Gbps的全雙工傳輸速率, 還具有8 B/10 B 編解碼、時鐘生成及恢復等功能, 可以理想地適用于芯片之間或背板的高速串行數(shù)據(jù)傳輸。Aurora 協(xié)議是為專有上層協(xié)議或行業(yè)標準的上層協(xié)議提供透明接口的第一款串行互連協(xié)議, 可用于高速線性通路之間的點到點串行數(shù)據(jù)傳輸, 同時其可擴展的帶寬, 為系統(tǒng)設計人員提供了所需要的靈活性[4]。但該協(xié)議幀格式的定義存在弊端,會導致系統(tǒng)資源的浪費。本文提出的設計方案可以改進Aurora 協(xié)議的固有缺陷,提高系統(tǒng)性能, 實現(xiàn)數(shù)據(jù)率為2.5 Gbps 的高速串行傳輸, 具有良好的可行性和廣闊的應用前景。

    標簽: Rocket 2.5 高速串行 收發(fā)器

    上傳時間: 2013-11-06

    上傳用戶:smallfish

  • LTE基站誤碼率測試方法和測試平臺設計

    LTE基站誤碼率測試是基站射頻測試中最為關鍵的測試項目之一,提出一種快速、高效的測試方法和測試架構。該方案采用基站射頻板作為數(shù)據(jù)采集卡、完成上行鏈路的解調(diào)和模擬信號轉(zhuǎn)換成I/Q數(shù)據(jù)功能,利用ADS、MATLAB搭建上行信道的同步、解碼功能。測試表明該方案的測試精度達到 0.2dB,完全滿足研發(fā)和生產(chǎn)中測試上行相關射頻指標的功能需求, 同時本設計還具有開發(fā)周期短、投資成本低,操作簡便、很強的跨系統(tǒng)移植能力。

    標簽: LTE 基站 誤碼率 測試方法

    上傳時間: 2013-11-17

    上傳用戶:xhwst

  • 最佳接收機誤碼率的兩種估算觀點

    很多教材都是從統(tǒng)計的觀點討論分析了最佳接收機的誤碼率問題,統(tǒng)計的觀點認為信道的噪聲是非帶限的高斯白噪聲,分析的過程也假設接收機非帶限。但是從實際和濾波的觀點來看,任何形式的接收機都是頻帶受限的,進入到接收機檢測器的噪聲頻帶也會受限。文中基于統(tǒng)計和濾波的觀點,討論了最佳接收機的誤碼率問題,得出的結論相同,但是分析的過程體現(xiàn)了兩者的不同之處,有助于更好的了解數(shù)字信號的最佳接收。

    標簽: 接收機 誤碼率

    上傳時間: 2013-11-04

    上傳用戶:爺?shù)臍赓|(zhì)

  • 甚低頻大地等效電阻率分析

    文中利用散射迭加方法,推導了多層土壤視在電阻率的計算公式。在此基礎上結合場地測試數(shù)據(jù),利用復鏡像法和電位函數(shù)計算法對天線場區(qū)的土壤模型進行反演,獲得土壤分層結構。然后從電磁理論出發(fā),根據(jù)所得到的土壤分層模型參數(shù),推導出甚低頻大地等效電阻率的3種等效法則,并對每一種等效法則下的等效電阻率進行了推導分析。

    標簽: 低頻 等效電阻率

    上傳時間: 2013-11-10

    上傳用戶:guanliya

亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产亚洲欧洲| 美女诱惑一区| 欧美高清视频一区二区| 亚洲精品久久在线| 亚洲一区欧美二区| 国产日韩精品视频一区二区三区| 久久精视频免费在线久久完整在线看| **性色生活片久久毛片| 欧美日韩国产高清| 久久福利一区| 亚洲日本在线观看| 国产精品入口福利| 欧美a级片网| 亚洲影院在线| 影音先锋亚洲电影| 欧美午夜寂寞影院| 久久免费视频在线| 亚洲视频在线观看| 亚洲成色777777女色窝| 欧美午夜久久| 狼人天天伊人久久| 亚洲一品av免费观看| 在线观看欧美视频| 蜜桃av综合| 国产一区二区视频在线观看| 亚洲成人在线网| 免费人成网站在线观看欧美高清| 欧美激情视频一区二区三区在线播放 | 一区在线视频观看| 欧美成人午夜| 欧美淫片网站| 亚洲视频在线视频| 亚洲人成在线观看网站高清| 国产农村妇女精品一二区| 欧美激情精品久久久久久大尺度| 欧美一区二区三区四区在线观看| 日韩一区二区精品葵司在线| 国产在线日韩| 欧美日韩亚洲成人| 免费不卡在线观看av| 亚洲欧美日韩在线播放| 99精品欧美一区二区三区综合在线 | 欧美中文字幕精品| 最新国产拍偷乱拍精品| 国产精品一区久久久久| 欧美日韩视频第一区| 欧美xx视频| 久久一本综合频道| 亚洲欧美日韩国产成人精品影院 | 国产视频久久久久| 国产精品黄视频| 另类国产ts人妖高潮视频| 午夜亚洲福利| 亚洲欧洲在线看| 国产精品自拍小视频| 欧美久久久久久久久| 免费在线观看精品| 久久久久久久综合日本| 亚欧成人精品| 亚洲特色特黄| 亚洲九九精品| 国产一区二区三区四区hd| 欧美日韩在线播放一区二区| 欧美另类视频在线| 欧美日韩和欧美的一区二区| 久久综合中文字幕| 久久久久久久久久久成人| 亚洲在线一区| 亚洲视频在线视频| 宅男噜噜噜66国产日韩在线观看| 在线观看欧美日韩| 亚洲第一黄网| 91久久精品网| 亚洲免费av片| 一区二区三区不卡视频在线观看| 亚洲最黄网站| 亚洲性视频网站| 亚洲欧美精品| 欧美一区二区播放| 欧美中文字幕在线视频| 久久大香伊蕉在人线观看热2| 久久国产成人| 久久久欧美精品sm网站| 欧美与欧洲交xxxx免费观看| 久久国产精品99精品国产| 久久久久99精品国产片| 久久国内精品自在自线400部| 久久精品视频亚洲| 免费成人av在线看| 欧美成人视屏| 欧美日韩不卡在线| 欧美日韩一区二区免费在线观看 | 亚洲欧洲视频| 亚洲狼人综合| 有码中文亚洲精品| 亚洲国产三级在线| 野花国产精品入口| 在线一区二区视频| 午夜精品区一区二区三| 欧美在线啊v| 久久免费一区| 久久日韩粉嫩一区二区三区| 免费不卡在线观看av| 欧美精品www| 国产精品日韩电影| 在线观看国产精品网站| 99re成人精品视频| 欧美一区二区高清在线观看| 久久全球大尺度高清视频| 欧美国产亚洲另类动漫| 国产精品久久久久影院色老大| 国产亚洲欧美日韩一区二区| 在线观看亚洲| 亚洲裸体视频| 西西裸体人体做爰大胆久久久| 欧美在线观看一二区| 欧美成人69| 国产精品一区二区在线观看网站| 国产综合自拍| 亚洲欧洲一二三| 午夜亚洲福利| 久久精品国产欧美亚洲人人爽| 欧美激情中文不卡| 国产欧美一区二区精品忘忧草| 在线成人中文字幕| 亚洲特级毛片| 美国十次成人| 国产精品乱码久久久久久| 国际精品欧美精品| 91久久久久久久久| 欧美亚洲色图校园春色| 欧美精品国产精品日韩精品| 国产欧美一区二区三区在线看蜜臀| 亚洲国产91精品在线观看| 在线一区二区三区四区五区| 欧美88av| 韩曰欧美视频免费观看| 日韩一二在线观看| 另类春色校园亚洲| 国产亚洲免费的视频看| 999在线观看精品免费不卡网站| 亚洲欧美日韩另类精品一区二区三区| 久久久噜噜噜久噜久久| 国产毛片精品视频| avtt综合网| 欧美1区3d| 国产一区香蕉久久| 亚洲一区二区在线观看视频| 久久精品欧洲| 国产精品一二三| 亚洲私人影院| 欧美电影免费观看| 影音先锋成人资源站| 欧美在线免费视屏| 国产精品伦一区| 亚洲精品久久久久久一区二区| 久久九九久精品国产免费直播| 国产精品福利在线| 这里只有精品在线播放| 欧美日本乱大交xxxxx| 亚洲精品中文字| 麻豆国产精品va在线观看不卡| 国产亚洲精品7777| 欧美在线观看视频一区二区三区 | 欧美成人亚洲成人日韩成人| 国产综合视频| 亚洲一区欧美| 国产精品激情av在线播放| 亚洲国产成人精品女人久久久 | 午夜久久久久久| 欧美精品久久久久久久免费观看| 伊人精品久久久久7777| 久久国产精品久久久久久久久久| 国产精品99一区二区| 依依成人综合视频| 久久久99免费视频| 国产日韩一区二区三区| 亚洲欧美福利一区二区| 欧美日韩国产综合新一区| 亚洲美女免费精品视频在线观看| 欧美国产在线视频| 亚洲精品孕妇| 欧美日本精品一区二区三区| 99re这里只有精品6| 欧美日韩精品在线播放| 亚洲天堂av综合网| 国产精品免费在线| 欧美亚洲午夜视频在线观看| 国产亚洲欧美一区| 久久久噜噜噜久久| 亚洲高清在线视频| 欧美人与性动交cc0o| 国产精品99久久久久久www| 国产精品美女一区二区在线观看| 午夜精品久久久久久久久久久久 | 欧美日韩视频一区二区三区| 一卡二卡3卡四卡高清精品视频| 欧美特黄一区| 欧美专区日韩专区| 一区二区三区自拍|