在電力系統(tǒng)容量日益擴大和電網(wǎng)電壓運行等級不斷提高的潮流下,傳統(tǒng)電磁式互感器在運行中暴露出越來越多的弊端,難以滿足電力系統(tǒng)向自動化、標(biāo)準(zhǔn)化和數(shù)字化的發(fā)展需求,電子式互感器取代傳統(tǒng)電磁式互感器已經(jīng)成為一種必然的趨勢,并成為人們研究的熱點。本文圍繞電子式電流互感器高壓側(cè)數(shù)據(jù)采集系統(tǒng)進行了研究與設(shè)計。 Rogowski線圈是電流傳感元件,本文總紿了Rogowski線圈的基本原理,其中包括線圈的等效電路和相量圖,線圈的電磁參數(shù)計算。在理論研究的基礎(chǔ)上,結(jié)合實際設(shè)計一款高精度PCBRogowski線圈。電容分壓器是電壓傳感元件,文章中介紹了傳感器的原理、傳感器的模型結(jié)構(gòu),針對其自身結(jié)構(gòu)缺陷和工作環(huán)境的電磁干擾,提出具有針對性的電磁兼容設(shè)計方法。 積分器的性能一直是影響Rogowski線圈電流傳感器的精度和穩(wěn)定性的重要因素之一。模擬積分器具有結(jié)構(gòu)簡單、響應(yīng)速度快、輸入動態(tài)范圍大等優(yōu)點;數(shù)字積分器具有性能穩(wěn)定,精度高等優(yōu)點。后者的優(yōu)勢使其成為近年來Rogowski線圈電流互感器實用化研究的一個熱點問題。本文設(shè)計了一套數(shù)字積分器設(shè)計的方法,其中包括了積分算法的選擇,積分輸入采樣率和分辨率的確定,數(shù)字積分器的通用結(jié)構(gòu),積分初值的選擇方法等。 為了保證系統(tǒng)的運行穩(wěn)定,文章中的系統(tǒng)只采用激光供電模式,降低數(shù)據(jù)采集系統(tǒng)的功耗就成了系統(tǒng)設(shè)計的一個重要環(huán)節(jié)。文章中介紹了一些實用的低功耗處理方法,分析了激光器的特性,光電池的特性和光電轉(zhuǎn)換器件的特性,并根據(jù)這些器件的特性,改進了數(shù)據(jù)發(fā)送激光器的驅(qū)動電路,大幅度降低了系統(tǒng)的功耗,保證了系統(tǒng)在較低供電功率條件下的正常運行。 論文最后對全文工作進行總結(jié),提出進一步需要解決的問題。
標(biāo)簽: 電子式互感器 數(shù)據(jù)采集系統(tǒng)
上傳時間: 2013-07-10
上傳用戶:zsjzc
隨著環(huán)境污染的惡化和能源危機問題的凸現(xiàn),低污染、高節(jié)能的電動汽車的研究和應(yīng)用成為當(dāng)今汽車產(chǎn)業(yè)的發(fā)展趨勢。作為電動汽車所必須的輔助設(shè)備—充電電源,其安全性、高效性及便攜性是影響電動汽車廣泛推廣的關(guān)鍵因素。因此,發(fā)展高效可靠的充電電源已成為電動汽車領(lǐng)域的重點研究方向之一。本論文以移相全橋直流變換器為基礎(chǔ),系統(tǒng)研究了移相全橋變換器控制策略和電路拓撲中的重要問題,研制一套適用于電動汽車的充電電源。論文的主要研究工作包括: 介紹電動汽車充電電源的充電方式以及軟開關(guān)全橋技術(shù),并對蓄電池的各種充電方式進行比較。 分析了移相全橋直流變換器的基本原理,對現(xiàn)今的幾種零電壓零電流(ZVZCS)移相全橋變換的主電路拓撲比較,選擇一種具有副邊簡單輔助電路的移相全橋作為主電路拓撲,結(jié)合所需電源的具體參數(shù),對主電路拓撲各元件進行設(shè)計,對主電路的工作過程分析,建立了其等效電路小信號模型。利用MATLAB中的SIMULINK仿真模塊對主電路進行仿真,證明了主電路參數(shù)設(shè)計的合理性。 設(shè)計了以DSP為控制核心的電源系統(tǒng),實現(xiàn)移相全橋控制、輸出電流電壓調(diào)制和過流過壓保護等功能,采用中斷功能實現(xiàn)移相PWM脈沖的軟件生成方法,給出了系統(tǒng)主程序、中斷服務(wù)程序、鍵盤及LCD顯示的程序流程圖。 最后給出樣機的實驗結(jié)果和分析。結(jié)果表明,在任何負載下,超前臂能夠較好的實現(xiàn)零電壓開關(guān),在小于半載的情況下,滯后臂能夠較好實現(xiàn)零電流開關(guān)。
上傳時間: 2013-05-29
上傳用戶:dreamboy36
三相電壓不平衡度是衡量電網(wǎng)電能質(zhì)量的一個重要指標(biāo)。在三相系統(tǒng)中,引起電壓不平衡的主要原因是發(fā)電機的輸出電壓不平衡和負載不平衡兩方面,電壓不平衡比較嚴重時,會給系統(tǒng)帶來諸多危害。近年來,STATCOM因其動態(tài)響應(yīng)速度快,電流諧波含量小,裝置體積小等優(yōu)點,在電壓不平衡補償中的應(yīng)用越來越廣。 首先本文研究了基于IGCT的STATCOM主電路。為了獲得更高的輸出電壓,通常需要將IGCT串聯(lián)使用。然而在器件串聯(lián)使用時,由于其特性的差異會產(chǎn)生暫態(tài)電壓分配不均衡,導(dǎo)致個別器件上產(chǎn)生過電壓而威脅器件的安全,嚴重時會燒毀器件。因此需要采用均壓電路來保證串聯(lián)結(jié)構(gòu)中電壓的平均分配。本文重點對IGCT串聯(lián)均壓電路和緩沖電路進行了設(shè)計,在分析串聯(lián)均壓電路的同時,計算了吸收電容和吸收電阻的取值范圍。而后,對緩沖電路進行了Pspice仿真,通過仿真驗證了均壓電路的工作效果。結(jié)果表明,吸收電容和吸收電阻的取值合適,能夠?qū)GCT的串聯(lián)運行起到很好的保護作用。本文還對100Kvar/660VSTATCOM的主電路進行了參數(shù)設(shè)計,對IGCT的型號和各主要元件進行了選擇。 本文重點研究了不平衡系統(tǒng)中STATCOM的控制策略。建立了基于IGCT的STATCOM的數(shù)學(xué)模型;根據(jù)STATCOM的電流暫態(tài)模型,對電流電壓進行序分解,并做D—Q坐標(biāo)變換,建立STATCOM在靜止坐標(biāo)系下的正、負序數(shù)學(xué)模型。基于建立的負序模型,研究STATCOM在不平衡情況下的控制策略,本文采用無差拍控制方法;根據(jù)實際補償時遇到的問題:收斂速度慢、依賴固定的負載模型、魯棒性差等,對無差拍控制方法進行了優(yōu)化設(shè)計。該優(yōu)化方法在傳統(tǒng)無差拍的基礎(chǔ)上引入了參考電流觀測器和狀態(tài)觀測器;文中具體設(shè)計了這個改進無差拍控制器和其相關(guān)電路。經(jīng)分析與仿真驗證了本文提出的優(yōu)化控制方法,將該方法應(yīng)用于STATCOM不平衡補償器,取得了良好的不平衡補償性能、快速的動態(tài)響應(yīng)和良好的魯棒性。
上傳時間: 2013-06-05
上傳用戶:abc123456.
太陽能發(fā)電在世界能源危機的今天飛速發(fā)展,已成為新能源的主流之一。逆變器作為主要的能量變換裝置器件,其性能的好壞直接影響著整個光伏系統(tǒng)的效率。本文采用電壓外環(huán)、電流內(nèi)環(huán)的雙環(huán)控制策略,保證了系統(tǒng)的動態(tài)響應(yīng)速度快,穩(wěn)態(tài)誤差小。為此,論文主要對系統(tǒng)的電路拓撲結(jié)構(gòu)、數(shù)學(xué)模型、控制方法以及基于FPGA的軟件實現(xiàn)方法等技術(shù)進行了分析研究。 本文首先通過對幾種常見的數(shù)學(xué)模型分析方法的比較,選擇適合本文的數(shù)學(xué)建模方法。文中給出了逆變器的拓撲結(jié)構(gòu),詳細論述了其工作原理,對該逆變器不同工作狀態(tài)下的等效電路進行分析,并利用狀態(tài)空間平均法建立了逆變器數(shù)學(xué)模型,確定主要元件的參數(shù)。 隨后對當(dāng)前比較流行的幾種逆變電路的控制方法進行了對比分析。本文采用的基于SPWM控制的電壓電流雙環(huán)控制的算法,具有開關(guān)頻率固定、物理意義清晰、實現(xiàn)方便的優(yōu)點,保證系統(tǒng)的穩(wěn)態(tài)誤差小,動態(tài)響應(yīng)速度快。通過分析幾種最大功率跟蹤算法各自的優(yōu)缺點,最后給出了改進的最大功率跟蹤算法,保證系統(tǒng)輸出最大功率。 最后用FPGA實現(xiàn)了系統(tǒng)控制方案的設(shè)計。整機測試結(jié)果表明:該逆變器的性能指標(biāo)基本達到了設(shè)計要求,驗證了數(shù)學(xué)模型和控制策略的有效性和理論分析的正確性和可行性。
上傳時間: 2013-07-25
上傳用戶:時代將軍
無刷直流電機以體積小、重量輕、效率高、調(diào)速性能好、無換向火花及無勵磁損耗等諸多優(yōu)點被大量應(yīng)用于家電、交通、醫(yī)療器械、數(shù)控機床及機器人等領(lǐng)域,現(xiàn)代工業(yè)的快速發(fā)展對無刷直流電機控制系統(tǒng)的性能要求也越來越高。可以預(yù)見,隨著永磁材料和電力電子器件價格進一步的降低,無刷直流電機驅(qū)動理論的研究不斷深入,無刷直流電機的應(yīng)用前景將更加廣泛。 本文通過閱讀大量文獻資料,介紹了無刷直流電機的發(fā)展現(xiàn)狀、研究動態(tài)及工作原理等。在控制策略上,采用了基于智能控制思想的模糊控制,其特點是不依賴于對象模型,利用制定的控制規(guī)則進行了模糊推理從而獲得合適的控制量。運用Matlab/Simulink對控制系統(tǒng)進行了建模和仿真,其中速度環(huán)采用模糊PI調(diào)節(jié),電流環(huán)采用傳統(tǒng)的PI調(diào)節(jié),為后面的實驗提供了理論分析的基礎(chǔ)。 結(jié)合無刷直流電機的結(jié)構(gòu),利用電機內(nèi)部的霍爾元件檢測轉(zhuǎn)子位置。根據(jù)模糊控制器的設(shè)計方法,給出了模糊控制查詢表。采用TI公司的數(shù)字信號處理器TMS320F2812作為主控芯片,在硬件上設(shè)計了整流電路、逆變電路、驅(qū)動電路、調(diào)理及保護電路等;在DSP軟件開發(fā)環(huán)境CCS下,采用C語言和匯編語言進行了混合編程,實現(xiàn)了轉(zhuǎn)子位置信號的讀取、PWM波的產(chǎn)生、AD采樣、速度模糊PI調(diào)節(jié)及電流調(diào)節(jié)等功能。 通過對整個控制系統(tǒng)的軟硬件聯(lián)合調(diào)試,進行了相關(guān)實驗。相對傳統(tǒng)的控制系統(tǒng),采用模糊PI控制的系統(tǒng)具有響應(yīng)速度快、超調(diào)量小、穩(wěn)定性好等優(yōu)點。實驗結(jié)果表明了無刷直流電機模糊控制系統(tǒng)設(shè)計的正確性。最后對整個設(shè)計進行了總結(jié),對后續(xù)的工作給出了自己的見解。
上傳時間: 2013-04-24
上傳用戶:R50974
電源是電子設(shè)備的重要組成部分,其性能的優(yōu)劣直接影響著電子設(shè)備的穩(wěn)定性和可靠性。隨著電子技術(shù)的發(fā)展,電子設(shè)備的種類越來越多,其對電源的要求也更加靈活多樣,因此如何很好的解決系統(tǒng)的電源問題已經(jīng)成為了系統(tǒng)成敗的關(guān)鍵因素。 本論文研究選取了BICMOS工藝,具有功耗低、集成度高、驅(qū)動能力強等優(yōu)點。根據(jù)電流模式的PWM控制原理,研究設(shè)計了一款基于BICMOS工藝的雙相DC-DC電源管理芯片。本電源管理芯片自動控制兩路單獨的轉(zhuǎn)換器工作,兩相結(jié)構(gòu)能提供大的輸出電流,但是在開關(guān)上的功耗卻很低。芯片能夠精確的調(diào)整CPU核心電壓,對稱不同通道之間的電流。本電源管理芯片單獨檢測每一通道上的電流,以精確的獲得每個通道上的電流信息,從而更好的進行電流對稱以及電路的保護。 文中對該DC-DC電源管理芯片的主要功能模塊,如振蕩器電路、鋸齒波發(fā)生電路、比較器電路、平均電流電路、電流檢測電路等進行了設(shè)計并給出了仿真驗證結(jié)果。該芯片只需外接少數(shù)元件就可構(gòu)成一個高性能的雙相DC-DC開關(guān)電源,可廣泛應(yīng)用于CPU供電系統(tǒng)等。 通過應(yīng)用Hspice軟件對該變換器芯片的主要模塊電路進行仿真,驗證了設(shè)計方案和理論分析的可行性和正確性,同時在芯片模塊電路設(shè)計的基礎(chǔ)上,應(yīng)用0.8μmBICMOS工藝設(shè)計規(guī)則完成了芯片主要模塊的版圖繪制,編寫了DRC、LVS文件并驗證了版圖的正確性。所設(shè)計的基于BICMOS工藝的DC-DC電源管理芯片的均流控制電路達到了預(yù)期的要求。
上傳時間: 2013-06-06
上傳用戶:dbs012280
近年來,隨著集成電路技術(shù)和電源管理技術(shù)的發(fā)展,低壓差線性穩(wěn)壓器(LDO)受到了普遍的關(guān)注,被廣泛應(yīng)用于便攜式電子產(chǎn)品如PDA、MP3播放器、數(shù)碼相機、無線電話與通信設(shè)備、醫(yī)療設(shè)備和測試儀器等中,但國內(nèi)研究起步晚,市場大部分被國外產(chǎn)品占有,因此,開展本課題的研究具有特別重要的意義。 首先,簡單闡述了課題研究的背景及意義,分析了低壓差線性穩(wěn)壓器(LDO)研究的現(xiàn)狀和發(fā)展趨勢,并提出了設(shè)計的預(yù)期技術(shù)指標(biāo)。 其次,詳細分析了LDO線性穩(wěn)壓器的理論基礎(chǔ),包括其結(jié)構(gòu)、各功能模塊的作用、系統(tǒng)工作原理、性能指標(biāo)定義及設(shè)計時對性能指標(biāo)之間相互矛盾的折衷考慮。 再次,設(shè)計了基于自偏置電流源的帶隙基準(zhǔn)電壓源,選取PMOS管作為系統(tǒng)的調(diào)整元件并計算出了其尺寸,設(shè)計了基于CMOS工藝的兩級誤差運算放大器。利用HSPICE工具仿真了基準(zhǔn)電壓源和誤差運算放大器的相關(guān)性能參數(shù)。 然后,重點分析了穩(wěn)壓器的穩(wěn)定性特征,指出系統(tǒng)存在的潛在不穩(wěn)定性,詳細論述了穩(wěn)定性補償?shù)谋匾裕容^了業(yè)界使用過的幾種穩(wěn)定性補償方法的不足之處,提出了一種基于電容反饋VCCS的補償方法,對系統(tǒng)進行了穩(wěn)定性的補償; 最后,將所設(shè)計的模塊進行聯(lián)合,設(shè)計了一款基于CMOS工藝的LDO線性穩(wěn)壓器電路,利用HSPICE工具驗證了其壓差電壓、靜態(tài)電流、線性調(diào)整率等性能指標(biāo),仿真結(jié)果驗證了理論分析的正確性、設(shè)計方法的可行性。
標(biāo)簽: CMOS 工藝 低壓差線性穩(wěn)壓器
上傳時間: 2013-07-08
上傳用戶:Wibbly
隨著電力電子技術(shù)的發(fā)展,高壓換流設(shè)備在工業(yè)應(yīng)用中日益廣泛。其核心元件晶閘管(SCR)的電壓與電流越來越高(已達到10KV/10KA以上),應(yīng)用場合要求也越來越高。在國際上,晶閘管的光控技術(shù)發(fā)展日益成熟。根據(jù)對國內(nèi)晶閘管技術(shù)發(fā)展前景和需求的展望,本文采用自供電驅(qū)動技術(shù)與光控技術(shù)相結(jié)合,研發(fā)光控自供電晶閘管驅(qū)動控制板,然后與晶閘管本體相結(jié)合即形成光控晶閘管工程化實現(xiàn)模型,其可作為光控晶閘管的替代技術(shù)。 在工程應(yīng)用中,光控晶閘管的典型應(yīng)用場合為四象限高壓變頻器和國家大型直流輸變電系統(tǒng)等。隨著國家節(jié)能工程的實施,高壓變頻器的應(yīng)用范圍越來越廣泛,已成為工業(yè)節(jié)能中的重要環(huán)節(jié)。高壓直流換流系統(tǒng)難度大,技術(shù)復(fù)雜,要求高,本論文研究的光控晶閘管替代技術(shù)只作為其儲備技術(shù)之一。本論文以電流源型高壓變頻器作為該光控晶閘管替代技術(shù)的應(yīng)用背景重點闡述。 電流源型高壓變頻器為了提高單機容量,通常是數(shù)個SCR串聯(lián)使用。隨著系統(tǒng)容量越來越大,裝置對高壓開關(guān)器件的要求也越來越高。如果一組串聯(lián)SCR中某一個SCR該導(dǎo)通時沒有導(dǎo)通,那么加在該組SCR上的電壓都將加到該SCR上形成過電壓,造成該器件的擊穿損壞,甚至于一組串聯(lián)SCR都被燒壞。為了克服上述問題,保證高壓變頻器中串聯(lián)晶閘管能夠安全可靠的工作,提高系統(tǒng)可靠性,有必要為晶閘管配備后備驅(qū)動系統(tǒng)。本文提出了給SCR驅(qū)動電路增設(shè)自供電驅(qū)動系統(tǒng)——SPDS (Self—Powered Drive System)的解決辦法。SPDS基本功能是通過高位取能電路利用RC緩沖電路中的能量為監(jiān)測電路和后備觸發(fā)電路提供正常工作所需要的能量。它的優(yōu)點是由于緩沖電路與晶閘管同電位,自供電驅(qū)動系統(tǒng)要求的電壓隔離水平可以從幾千伏降低到幾百伏,節(jié)省了高壓隔離變壓器,節(jié)省了成本和體積,提高了系統(tǒng)可靠性。國外對相關(guān)內(nèi)容已經(jīng)有了深入研究,并將其應(yīng)用在高壓變頻器產(chǎn)品中。在國內(nèi),目前還沒有查到相關(guān)文獻。本文為基于晶閘管的電流源型高壓變頻器設(shè)計了一種高壓晶閘管自供電驅(qū)動系統(tǒng),填補了國內(nèi)空白,為自供電驅(qū)動系統(tǒng)的推廣應(yīng)用和其他高壓開關(guān)器件自供電驅(qū)動系統(tǒng)的研制提供了參考。 本文詳細介紹了串聯(lián)高壓晶閘管驅(qū)動系統(tǒng)的要求和RC緩沖電路的工作特 點,進而提出了SPDS的工作原理和具體實現(xiàn)方式,闡述了SPDS各部分組成及其功能。SPDS的核心技術(shù)是取能回路和觸發(fā)方式的設(shè)計。本文在比較各種高壓取能方式和觸發(fā)方式優(yōu)缺點的基礎(chǔ)上,選擇采用RC緩沖取能方式和光纖觸發(fā)方式。 論文基于Multisim10仿真軟件,結(jié)合高壓晶閘管自供電驅(qū)動系統(tǒng)取能電路的原理,對高壓晶閘管自供電驅(qū)動系統(tǒng)的核心部分——SPDS取能電路進行了仿真。通過搭建帶SPDS取能電路的單相晶閘管仿真電路和電流源型高壓變頻器前側(cè)變流電路的仿真模型,詳細討論了影響RC取能回路正常工作的各種因素。同時,通過設(shè)定仿真電路的參數(shù),分析了其工作狀況。根據(jù)得到的仿真波形圖,證明了高壓晶閘管自供電驅(qū)動系統(tǒng)可以達到有效觸發(fā)晶閘管導(dǎo)通的設(shè)計目標(biāo),具有可行性。 為考察SPDS的實際工作性能,本文搭建了簡易的SPDS低壓硬件實驗平臺,為其高壓條件下的工程化應(yīng)用打好了基礎(chǔ)。 在論文的最后,對高壓晶閘管自供電驅(qū)動系統(tǒng)的發(fā)展方向進行了展望。 關(guān)鍵詞:高壓變頻器;晶閘管驅(qū)動;自供電系統(tǒng);高壓換流;光控晶閘管
上傳時間: 2013-05-26
上傳用戶:riiqg1989
在能源日漸枯竭、環(huán)境污染日益嚴重的今天,太陽能作為一種新興的綠色能源,以其取之不竭、用之不盡、無污染等優(yōu)點,受到人們越來越多的重視。作為太陽能利用的一種有效方式,光伏發(fā)電技術(shù)得到了迅速地發(fā)展。 光伏充電控制系統(tǒng)是光伏發(fā)電系統(tǒng)中重要的組成部分,光伏電池將太陽能轉(zhuǎn)變?yōu)殡娔埽铍姵貙⑥D(zhuǎn)化出來的電能儲存起來,充電控制系統(tǒng)在該過程中起著樞紐作用。本文以光伏充電控制系統(tǒng)作為研究對象,從系統(tǒng)的參數(shù)選擇、拓撲結(jié)構(gòu)、控制策略、最大功率跟蹤及蓄電池的保護等方面作了詳細的分析和研究。論文主要工作如下: 1)本文詳細介紹了最大功率點跟蹤技術(shù)在光伏充電系統(tǒng)中的應(yīng)用,分析和比較了常用的最大功率點跟蹤方法的優(yōu)缺點,討論了一種改進的MPPT算法--“山峰”逼近法。與原有的跟蹤方法相比,該方法具有良好的啟動特性,最大功率點跟蹤精度、系統(tǒng)對外界條件變化的響應(yīng)速度和運行的穩(wěn)定性都有一定的提高。仿真結(jié)果表明這種算法能夠準(zhǔn)確地找到最大功率點。 2)通過對蓄電池充電特性和常用充電方法的分析,制定了本文所采用光伏充電方法,其充電過程分為最大功率充電、恒壓充電和浮充電三種狀態(tài)。該方法綜合了恒流充電快速、安全的優(yōu)點和恒壓充電能夠控制過充電以及在浮充狀態(tài)保持電池100%電量的優(yōu)點。 3)分析和比較了不同光伏充電控制系統(tǒng)的結(jié)構(gòu)、性能和特點,確定采用Buck拓撲作為智能光伏充電系統(tǒng)的主電路結(jié)構(gòu),該電路結(jié)構(gòu)簡單,運行可靠,可以滿足最大功率跟蹤和光伏充電的要求。給出了該系統(tǒng)主電路、控制電路各元件參數(shù)的選擇和系統(tǒng)的軟件設(shè)計流程圖。 4)根據(jù)前面的理論研究,本文設(shè)計制作了智能光伏充電控制系統(tǒng)的實驗樣機,并進行了實驗研究,獲得了良好的實驗結(jié)果。
標(biāo)簽: 智能光伏 充電控制系統(tǒng)
上傳時間: 2013-07-20
上傳用戶:amwfhv
在能源枯竭與環(huán)境污染問題日益嚴重的今天,風(fēng)力發(fā)電已經(jīng)成為綠色可再生能源的一個重要途徑。雙饋電機變速恒頻(VSCF)發(fā)電是通過對轉(zhuǎn)子繞阻的控制來實現(xiàn)的,而轉(zhuǎn)子回路流動的功率是由發(fā)電機運行范圍所決定的轉(zhuǎn)差功率,因而可以將發(fā)電機的同步轉(zhuǎn)速設(shè)定在整個運行范圍的中間。如果系統(tǒng)運行的轉(zhuǎn)差率范圍為±30%,則最大轉(zhuǎn)差功率僅為發(fā)電機額定功率的30%,因此交流勵磁變換器的容量可大大減小,從而降低成本。該變換器如果加上良好的控制策略,則系統(tǒng)運行將具有優(yōu)越的穩(wěn)態(tài)和暫態(tài)運行性能,非常適用于風(fēng)能這種隨機性強的能源形式。本文對變速恒頻雙饋機風(fēng)力發(fā)電系統(tǒng)的若干關(guān)鍵技術(shù),如空載柔性并網(wǎng)、帶載柔性并網(wǎng)、解列控制、最大功率點跟蹤、電網(wǎng)電壓不平衡運行、低電壓故障穿越等問題進行了深入研究,論文的主要工作如下: 根據(jù)交流勵磁變速恒頻風(fēng)力發(fā)電的運行特點,將電網(wǎng)電壓定向的矢量控制方法應(yīng)用在雙饋發(fā)電機的并網(wǎng)發(fā)電控制上。研究了一種基于電網(wǎng)電壓定向的雙饋機變速恒頻風(fēng)力發(fā)電柔性并網(wǎng)控制策略,在變速條件下實現(xiàn)無電流沖擊并網(wǎng)和輸出有功、無功功率的解耦控制,建立了交流勵磁發(fā)電機柔性并網(wǎng)及穩(wěn)態(tài)運行的控制模型,對柔性并網(wǎng)及其逆過程的解列分別進行了仿真和實驗研究。 提出了一種以向電網(wǎng)輸送凈電能最多為目標(biāo)的最大功率點跟蹤控制策略,在不檢測風(fēng)速情況下,能夠自動尋找并跟隨最大功率點,且不依賴風(fēng)力機最佳功率特性曲線,提高了發(fā)電系統(tǒng)的凈輸出能力,具有良好的動、靜態(tài)性能。仿真和實驗結(jié)果證明了本控制策略的正確性和有效性。 對網(wǎng)側(cè)變換器分別進行了幅相控制和直接電流控制策略的研究。結(jié)果表明:幅相控制策略簡單實用,可以得到正弦波電流,且波形諧波小,實現(xiàn)了單位功率因數(shù)運行,但響應(yīng)速度相對較慢;而直接電流控制策略具有網(wǎng)側(cè)電流閉環(huán)控制,使網(wǎng)側(cè)電流動、靜態(tài)性能得到提高,實現(xiàn)對系統(tǒng)參數(shù)的不敏感,增強了電流控制系統(tǒng)的魯棒性,但算法相對復(fù)雜。 在電網(wǎng)不平衡條件下,如果以傳統(tǒng)的電網(wǎng)電壓平衡控制策略設(shè)計PWM整流器,會使系統(tǒng)出現(xiàn)不正常的運行狀態(tài)。為了提高三相PWM整流器的運行性能,本文對電網(wǎng)電壓不平衡情況下三相PWM整流器運行控制策略進行了改進,研究了消除負序電流和抑制輸入功率二次諧波的控制策略,實現(xiàn)了線電流正弦、負序輸入電流為零及總無功功率輸入為最小的目標(biāo)。 為了提高VSCF風(fēng)力發(fā)電系統(tǒng)的運行能力,本文對電網(wǎng)故障時雙饋風(fēng)力發(fā)電系統(tǒng)低電壓穿越控制(LVRT)進行了研究,在不改變系統(tǒng)硬件結(jié)構(gòu)的情況下,通過改變勵磁控制策略來實現(xiàn)LVRT;在電網(wǎng)故障時使電機和變換器安全穿越故障,保持不脫網(wǎng)運行,提高系統(tǒng)的穩(wěn)定性和安全性。
標(biāo)簽: 變速恒頻 雙饋 關(guān)鍵技術(shù)
上傳時間: 2013-07-09
上傳用戶:leileiq
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1