激光雷達是激光技術和雷達技術相結合的產物,其工作原理與傳統雷達基本相同,都是通過雷達發射信號,由接收系統收集從目標返回的信號,并對其進行觀察和處理來發現目標、測量目標的坐標和運動參數等1-7].由于激光雷達發射的激光頻率較微波高幾個數量級,故頻率的量變使得激光雷達技術產生了質的變革.因此,激光雷達在精度、分辨率、抗干擾性和某些特定參數測量能力方面都是普通雷達所無法比擬的.雷達系統的核心部分是三維成像激光雷達信號處理系統,其處理的數據量大、實時性要求高,因此,對信號處理系統的設計要求很高,由于FPGA運算速度快、實時性好,在數字信號處理方面有明顯的優勢,故設計一種基于FPGA和MCU的三維成像激光雷達信號處理系統,具有重要的現實意義.1成像激光雷達原理與系統方案設計激光雷達系統由雷達發射系統、接收系統、控制系統和信號處理系統等部分構成,其原理框圖見圖1.發射系統與接收系統用于發射一定的激光波束并接收目標的反射光信號,同時將光信號轉化為電信號,包括激光器、光電探測器、發射光學系統和接收光學系統幾部分;信號處理系統是將光電探測器接收到的信號進行放大,并從信號中提取有用信息,然后將這種信息轉化為所需要的信號形式,包括前置放大、信號處理和數據采集等部分;處理與顯示系統是整個成像系統的終端部分,其功能是將采集到的數據形成圖像并顯示.
上傳時間: 2022-06-24
上傳用戶:
高清晶體管電路設計(上)放大電路技術的實驗解析也已上傳:http://dl.21ic.com/download/ic-330937.html 近年來電子電路的設計進入了以IC/LSl(集成電路/大規模集成電路)為中心的階段。小小的管殼內凝縮了各種功能的IC/I.Sl給人們帶來了極大的方便,可以說沒有它就沒有現代的電子電路。現在是IC的全盛時代。IC/LSI今后還將進一步集成周邊部件及功能,使之規模更大、功能更強、性能更高。最近有這樣的說法,雖然使用晶體管或FET(場效應晶體管)簡單而方便,但是現在的趨勢更傾向于使用IC。也有人感到專用IC的價格昂貴,但是不知道怎樣才能把IC與晶體管、FET巧妙地組合起來獲得性能更高的電路。諸如“用晶體管或(和)FET做成的分立電路最好”之類的說法并沒有過時,只不過對于IC/1SI以及晶體管、FET構成的許多放大/開關器件來說,各自都有有效利用它們優點的使用方法。在這樣的背景下,本書通過具體的實驗,抓住晶體管、FET的工作圖像,以達到靈活運用這些器件的目的。已經出版的本系列《晶體管電路設計(上)》一書中進行了以晶體管放大電路為中心的許多實驗。本書是它的續編,將介紹有關FET放大電路、開關電路、模擬開關、振蕩電路等方面的實驗。本書若能對提高讀者的電子電路的應用技能有所幫助,著者將深感榮幸。最后,對在本書的出版、發行過程中給予支持和幫助的有關各方面表示感謝。
上傳時間: 2022-06-25
上傳用戶:
當山>0時,必然使集成運放的輸出uo<0,從而導致二極管D2導通,D1截止,電路實現反相比例運算,輸出電壓當u<0時,必然使集成運放的輸出uo>0,從而導致二極管D1導通D2截止,R+中電流為零,因此輸出電壓uo=0。u和uo的波形如圖(b)所小如果設二極管的導通電壓為0.7V,集成運放的開環差模放大倍數為50萬倍,那么為使二極管D1導通,集成運放的凈輸入電壓0.7v=014×10-=145×10同理可估算出為使D2導通集成運放所需的凈輸入電壓,也是同數量級。可見,只要輸入電壓u使集成運放的凈輸入電壓產生非常微小的變化,就可以改變D1和D2工作狀態,從而達到精密整流的目的在半波精密整流電路中,當u>0時,U=Ku(K>0),當u<0時,U=0若利用反相求和電路將-Ku與山負半周波形相加,就可實現全波整流。分析由A所組成的反相求和運算電路可知,輸出電壓當u>0時,U=2u,u∞=-(-2u+u)=u;當u<0時,uo=0、想想?)uc-u;所以故此圖也稱為絕對值電路。當輸入電壓為正弦波和三角波時,電路輸出波形分別如圖所示。
標簽: 精密整流電路
上傳時間: 2022-06-26
上傳用戶:
基于LTspice的射極跟隨器仿真實驗1,實驗要求與目的(1)進一步掌握靜態工作點的調試方法,深入理解靜態工作點的作用。(2)調節電路的跟隨范圍,使輸出信號的跟隨范圍最大。(3)測量電路的電壓放大倍數、輸入電阻和輸出電阻。(4)測量電路的頻率特性。2·實驗原理在射極跟隨器電路中,信號由基極和地之間輸入,由發射極和地之間輸出,集電極交流等效接地,所以,集電極是輸入/輸出信號的公共端,故稱為共集電極電路。又由于該電路的輸出電壓是跟隨輸入電壓變化的,所以又稱為射極跟隨器。3.實驗電路射極跟隨器電路如圖 1所示。4.實驗步驟(1)靜態工作點的調整。按圖 1連接電路,輸入信號由信號發生器產生一個幅度為 1V、頻率為1kHz的正弦信號。要注意使信號不失真輸出。(2)跟隨范圍調節。增大輸入信號直到輸出出現失真,觀察出現了飽和失真還是截止失真,再增大或減小信號,使失真消除。再次增大輸入信號,若出現失真,再調節信號使輸出波形達到最大不失真輸出,此時電路的靜態工作點是最佳工作點,輸入信號是最大的跟隨范圍。最后輸入信號增加到28 v,電路達到最大不失真輸出如圖 2所示。最大輸入、輸出信號波形如圖 3所示。
上傳時間: 2022-06-26
上傳用戶:
電路見圖1當把開關K1打向“逆變”位置時,BG1導通,由時基電路NE555及外圍元件組成的無穩態多諧振蕩器開始振蕩,其充?放電時間常數可調節?如果選擇R1=R2則輸出脈沖的占空比為50%,該多諧振蕩器的振蕩頻率f=1.443/(R1+R2+2W)C2,圖中的元件數值可使振蕩頻率調在50Hz,振蕩脈沖由役腳輸出,波形為方波,該方波經C4耦合,R3?C5積分變為三角波,這個三角波又經RPC6,第二次積分和R5?C7第三次積分,變為近似的正弦波,通過C8耦合到BG2,由BG2放大后在B1的L2線圈上輸出?當L2上端電壓為正時,D4截止,D3導通,使BGPBG6截止,BG3?BG5導通,電流由電瓶正極→B2的L1-BG5-電瓶負極;當L2上端電壓為負時,D3截止,D4導通,使BG2BG5截止,BG4?BG6導通,電流由電瓶正極一B2的L2-BG6電瓶負極?BGBG6交替導通?截止,經變壓器B2合成正負對稱的正弦波,并由L3升壓送至逆變輸出插座CZ12CZ2,供用電器使用,同時LED1(紅色)亮,指示逆變狀態?當開關打向“充電”位置時,市電經變壓器B2降壓?D5?D6全波整流?R11限流后對電瓶充電,同時LED2(綠色)亮,指示充電狀態?
上傳時間: 2022-06-27
上傳用戶:
運算放大器基礎篇,該基礎電路適用于實際電路中各小信號放大場合,如熱電偶電信號放大等
上傳時間: 2022-06-27
上傳用戶:kent
stm32圖像處理 (數字字符識別)在源碼 基于STM32的字符識別算法程序,內涵Prewitt卷積計算提取輪廓,二值化,字符放大,字符細化,字符匹配等圖像識別算法。注釋詳細,移植簡單,只要擁有STM32開發板和OV7670攝像頭即可實現。 本程序是車牌識別的入門學習實驗代碼,有了這個就能理解車牌識別的基本實現原理!不過略有差異! 可以用來學習stm32練手!
上傳時間: 2022-06-27
上傳用戶:aben
調頻收音機的設計及仿真電路,仿真是在multisim平臺,信號先經過高頻放大,混頻,中頻放大,鑒頻,低頻放大最后輸出信號。
標簽: 調頻收音機
上傳時間: 2022-06-30
上傳用戶:
設計要求:① 電路輸出功率大于4W,負載8Ω;② 頻率響應 20~20KHz;③ 失真小,輸出波形基本不失真;④輸入阻抗不低于47KΩ;⑤輸入靈敏度為100mV。針對要求,文檔提供設計方案,并對方案進行仿真驗證。仿真通過Multisim軟件。
上傳時間: 2022-06-30
上傳用戶:
常見一些玩家和工程師為音頻電路噪音所擾,這里就本人在實踐中總結出的一些經驗與大家分享。限于篇幅,本文僅討論模擬類音頻電路,數字、D類電路僅供參考,高頻、射頻電路地線排布規則與低頻模擬電路不同,因此沒有借鑒意義。噪音與放大器相生相伴,是無可避免的,所謂降低噪音,目的是將其降低至可接受的范圍,而不是將其根除:信噪比只能盡量提高,但不能大至無限。音頻電路噪音按來源可粗略分為電磁干擾、地線干擾、機械噪聲與熱噪聲幾類,下面來對噪音來源作簡要分析,并提出一些經實踐證明行之有效的解決手段,希望能與同行探討。一 電磁干擾電磁干擾主要來源是電源變壓器和空間雜散電磁波。音頻電路尤其是早期的模擬音頻電路,多數是由市電提供電源,因此必然要使用電源變壓器。電源變壓器工作過程是一個“電—磁—電”的轉換過程,在電磁轉換過程中會產生一定的磁泄露,變壓器泄露的磁場被放大電路拾取并放大,最終經過揚聲器發出交流聲。
上傳時間: 2022-06-30
上傳用戶:slq1234567890