基于AT89C51應用系統的串行通信設計:介紹了基于AT89C51應用系統中的串行通信軟硬件設計方法和實現過程,在基于紅外成像技術的電力設備狀態檢測系統中,將紅外測溫儀檢測到設備的溫度數據傳給控制電路,進行數據格式的轉換后,在RAM 中存儲,同時上傳給PC機。系統利用MAX232實現RS 232C的EIA 電平與單片機的TTI 電平之聞轉換,利用通用串口芯片8251A擴展串行接13',實現PC機與單片機之問的串行通信。 關鍵詞:串行通信;單片機;接口;RS232C
上傳時間: 2014-12-21
上傳用戶:aeiouetla
10月22日,德州儀器 (TI) 宣布推出價格更低的、基于 Stellaris ARM Cortex™-M3 的全新微處理器產品,擴展了旗下微處理器 (MCU) 陣營,從而為開發人員滿足嵌入式設計需求提供了更高的靈活性。29 款全新 Stellaris MCU 包括針對運動控制應用、智能模擬功能以及擴展的高級連接選項等的獨特 IP,可為工業應用提供各種價格/性能的解決方案。此外,該產品系列還可提供更大范圍的存儲器引腳兼容以及最新緊湊型封裝,可顯著節省空間與成本。由于 Stellaris MCU 卓越的集成度已融入 TI 的規模效應之中,由此帶來的高效率可使整個 Stellaris 系列的價格平均下降 13%。TI 綜合 StellarisWare® 軟件可為每款器件提供支持,從而可加速能源、安全以及連接市場領域的應用開發。
上傳時間: 2013-11-14
上傳用戶:如果你也聽說
關鍵詞 CAN報文對象的FIFO模式應用摘 要 CAN通信實驗
上傳時間: 2013-11-03
上傳用戶:kernor
MSP430系列超低功耗16位單片機原理與應用TI公司的MSP430系列微控制器是一個近期推出的單片機品種。它在超低功耗和功能集成上都有一定的特色,尤其適合應用在自動信號采集系統、液晶顯示智能化儀器、電池供電便攜式裝置、超長時間連續工作設備等領域。《MSP430系列超低功耗16位單片機原理與應用》對這一系列產品的原理、結構及內部各功能模塊作了詳細的說明,并以方便工程師及程序員使用的方式提供軟件和硬件資料。由于MSP430系列的各個不同型號基本上是這些功能模塊的不同組合,因此,掌握《MSP430系列超低功耗16位單片機原理與應用》的內容對于MSP430系列的原理理解和應用開發都有較大的幫助。《MSP430系列超低功耗16位單片機原理與應用》的內容主要根據TI公司的《MSP430 Family Architecture Guide and Module Library》一書及其他相關技術資料編寫。 《MSP430系列超低功耗16位單片機原理與應用》供高等院校自動化、計算機、電子等專業的教學參考及工程技術人員的實用參考,亦可做為應用技術的培訓教材。MSP430系列超低功耗16位單片機原理與應用 目錄 第1章 MSP430系列1.1 特性與功能1.2 系統關鍵特性1.3 MSP430系列的各種型號??第2章 結構概述2.1 CPU2.2 代碼存儲器?2.3 數據存儲器2.4 運行控制?2.5 外圍模塊2.6 振蕩器、倍頻器和時鐘發生器??第3章 系統復位、中斷和工作模式?3.1 系統復位和初始化3.2 中斷系統結構3.3 中斷處理3.3.1 SFR中的中斷控制位3.3.2 外部中斷3.4 工作模式3.5 低功耗模式3.5.1 低功耗模式0和模式13.5.2 低功耗模式2和模式33.5.3 低功耗模式43.6 低功耗應用要點??第4章 存儲器組織4.1 存儲器中的數據4.2 片內ROM組織4.2.1 ROM表的處理4.2.2 計算分支跳轉和子程序調用4.3 RAM與外圍模塊組織4.3.1 RAM4.3.2 外圍模塊--地址定位4.3.3 外圍模塊--SFR??第5章 16位CPU?5.1 CPU寄存器5.1.1 程序計數器PC5.1.2 系統堆棧指針SP5.1.3 狀態寄存器SR5.1.4 常數發生寄存器CG1和CG2?5.2 尋址模式5.2.1 寄存器模式5.2.2 變址模式5.2.3 符號模式5.2.4 絕對模式5.2.5 間接模式5.2.6 間接增量模式5.2.7 立即模式5.2.8 指令的時鐘周期與長度5.3 指令集概述5.3.1 雙操作數指令5.3.2 單操作數指令5.3.3 條件跳轉5.3.4 模擬指令的簡短格式5.3.5 其他指令5.4 指令分布??第6章 硬件乘法器?6.1 硬件乘法器的操作6.2 硬件乘法器的寄存器6.3 硬件乘法器的SFR位6.4 硬件乘法器的軟件限制6.4.1 硬件乘法器的軟件限制--尋址模式6.4.2 硬件乘法器的軟件限制--中斷程序??第7章 振蕩器與系統時鐘發生器?7.1 晶體振蕩器7.2 處理機時鐘發生器7.3 系統時鐘工作模式7.4 系統時鐘控制寄存器7.4.1 模塊寄存器7.4.2 與系統時鐘發生器相關的SFR位7.5 DCO典型特性??第8章 數字I/O配置?8.1 通用端口P08.1.1 P0的控制寄存器8.1.2 P0的原理圖8.1.3 P0的中斷控制功能8.2 通用端口P1、P28.2.1 P1、P2的控制寄存器8.2.2 P1、P2的原理圖8.2.3 P1、P2的中斷控制功能8.3 通用端口P3、P48.3.1 P3、P4的控制寄存器8.3.2 P3、P4的原理圖8.4 LCD端口8.5 LCD端口--定時器/端口比較器??第9章 通用定時器/端口模塊?9.1 定時器/端口模塊操作9.1.1 定時器/端口計數器TPCNT1--8位操作9.1.2 定時器/端口計數器TPCNT2--8位操作9.1.3 定時器/端口計數器--16位操作9.2 定時器/端口寄存器9.3 定時器/端口SFR位9.4 定時器/端口在A/D中的應用9.4.1 R/D轉換原理9.4.2 分辨率高于8位的轉換??第10章 定時器?10.1 Basic Timer110.1.1 Basic Timer1寄存器10.1.2 SFR位10.1.3 Basic Timer1的操作10.1.4 Basic Timer1的操作--LCD時鐘信號fLCD?10.2 8位間隔定時器/計數器10.2.1 8位定時器/計數器的操作10.2.2 8位定時器/計數器的寄存器10.2.3 與8位定時器/計數器有關的SFR位10.2.4 8位定時器/計數器在UART中的應用10.3 看門狗定時器11.1.3 比較模式11.1.4 輸出單元11.2 TimerA的寄存器11.2.1 TimerA控制寄存器TACTL11.2.2 捕獲/比較控制寄存器CCTL11.2.3 TimerA中斷向量寄存器11.3 TimerA的應用11.3.1 TimerA增計數模式應用11.3.2 TimerA連續模式應用11.3.3 TimerA增/減計數模式應用11.3.4 TimerA軟件捕獲應用11.3.5 TimerA處理異步串行通信協議11.4 TimerA的特殊情況11.4.1 CCR0用做周期寄存器11.4.2 定時器寄存器的啟/停11.4.3 輸出單元Unit0??第12章 USART外圍接口--UART模式?12.1 異步操作12.1.1 異步幀格式12.1.2 異步通信的波特率發生器12.1.3 異步通信格式12.1.4 線路空閑多處理機模式12.1.5 地址位格式12.2 中斷與控制功能12.2.1 USART接收允許12.2.2 USART發送允許12.2.3 USART接收中斷操作12.2.4 USART發送中斷操作12.3 控制與狀態寄存器12.3.1 USART控制寄存器UCTL12.3.2 發送控制寄存器UTCTL12.3.3 接收控制寄存器URCTL12.3.4 波特率選擇和調制控制寄存器12.3.5 USART接收數據緩存URXBUF12.3.6 USART發送數據緩存UTXBUF12.4 UART模式--低功耗模式應用特性12.4.1 由UART幀啟動接收操作12.4.2 時鐘頻率的充分利用與UART模式的波特率12.4.3 節約MSP430資源的多處理機模式12.5 波特率的計算??第13章 USART外圍接口--SPI模式?13.1 USART的同步操作13.1.1 SPI模式中的主模式--MM=1、SYNC=113.1.2 SPI模式中的從模式--MM=0、SYNC=113.2 中斷與控制功能13.2.1 USART接收允許13.2.2 USART發送允許13.2.3 USART接收中斷操作13.2.4 USART發送中斷操作13.3 控制與狀態寄存器13.3.1 USART控制寄存器13.3.2 發送控制寄存器UTCTL13.3.3 接收控制寄存器URCTL13.3.4 波特率選擇和調制控制寄存器13.3.5 USART接收數據緩存URXBUF13.3.6 USART發送數據緩存UTXBUF??第14章 液晶顯示驅動?14.1 LCD驅動基本原理14.2 LCD控制器/驅動器14.2.1 LCD控制器/驅動器功能14.2.2 LCD控制與模式寄存器14.2.3 LCD顯示內存14.2.4 LCD操作軟件例程14.3 LCD端口功能14.4 LCD與端口模式混合應用實例??第15章 A/D轉換器?15.1 概述15.2 A/D轉換操作15.2.1 A/D轉換15.2.2 A/D中斷15.2.3 A/D量程15.2.4 A/D電流源15.2.5 A/D輸入端與多路切換15.2.6 A/D接地與降噪15.2.7 A/D輸入與輸出引腳15.3 A/D控制寄存器??第16章 其他模塊16.1 晶體振蕩器16.2 上電電路16.3 晶振緩沖輸出??附錄A 外圍模塊地址分配?附錄B 指令集描述?B1 指令匯總B2 指令格式B3 不增加ROM開銷的指令模擬B4 指令說明B5 用幾條指令模擬的宏指令??附錄C EPROM編程?C1 EPROM操作C2 快速編程算法C3 通過串行數據鏈路應用\"JTAG\"特性的EPROM模塊編程C4 通過微控制器軟件實現對EPROM模塊編程??附錄D MSP430系列單片機參數表?附錄E MSP430系列單片機產品編碼?附錄F MSP430系列單片機封裝形式?
上傳時間: 2014-05-07
上傳用戶:lwq11
PC機與單片機通信實例:表決器單片機要同時處理很多部分的功能,如:按鍵處理、LED處理、通信處理等。而單片機程序是串行執行的。如何讓眾多任務同時進行或者看起來同時進行?并行:真正意義上的同時進行。并發:宏觀上是同時的,而在微觀上是輪流進行的。即看起來是同時進行的。例如:面前的CRT顯示器,電子束是逐點順序點亮熒光屏上的像素。由于點亮的速度足夠快,很短時間便可掃過整個屏幕,以致于在宏觀上看,所有的像素都是同時刷新的。
上傳時間: 2013-10-28
上傳用戶:spman
PC機之間串口通信的實現一、實驗目的 1.熟悉微機接口實驗裝置的結構和使用方法。 2.掌握通信接口芯片8251和8250的功能和使用方法。 3.學會串行通信程序的編制方法。 二、實驗內容與要求 1.基本要求主機接收開關量輸入的數據(二進制或十六進制),從鍵盤上按“傳輸”鍵(可自行定義),就將該數據通過8251A傳輸出去。終端接收后在顯示器上顯示數據。具體操作說明如下:(1)出現提示信息“start with R in the board!”,通過調整乒乓開關的狀態,設置8位數據;(2)在小鍵盤上按“R”鍵,系統將此時乒乓開關的狀態讀入計算機I中,并顯示出來,同時顯示經串行通訊后,計算機II接收到的數據;(3)完成后,系統提示“do you want to send another data? Y/N”,根據用戶需要,在鍵盤按下“Y”鍵,則重復步驟(1),進行另一數據的通訊;在鍵盤按除“Y”鍵外的任意鍵,將退出本程序。2.提高要求 能夠進行出錯處理,例如采用奇偶校驗,出錯重傳或者采用接收方回傳和發送方確認來保證發送和接收正確。 三、設計報告要求 1.設計目的和內容 2.總體設計 3.硬件設計:原理圖(接線圖)及簡要說明 4.軟件設計框圖及程序清單5.設計結果和體會(包括遇到的問題及解決的方法) 四、8251A通用串行輸入/輸出接口芯片由于CPU與接口之間按并行方式傳輸,接口與外設之間按串行方式傳輸,因此,在串行接口中,必須要有“接收移位寄存器”(串→并)和“發送移位寄存器”(并→串)。能夠完成上述“串←→并”轉換功能的電路,通常稱為“通用異步收發器”(UART:Universal Asynchronous Receiver and Transmitter),典型的芯片有:Intel 8250/8251。8251A異步工作方式:如果8251A編程為異步方式,在需要發送字符時,必須首先設置TXEN和CTS#為有效狀態,TXEN(Transmitter Enable)是允許發送信號,是命令寄存器中的一位;CTS#(Clear To Send)是由外設發來的對CPU請求發送信號的響應信號。然后就開始發送過程。在發送時,每當CPU送往發送緩沖器一個字符,發送器自動為這個字符加上1個起始位,并且按照編程要求加上奇/偶校驗位以及1個、1.5個或者2個停止位。串行數據以起始位開始,接著是最低有效數據位,最高有效位的后面是奇/偶校驗位,然后是停止位。按位發送的數據是以發送時鐘TXC的下降沿同步的,也就是說這些數據總是在發送時鐘TXC的下降沿從8251A發出。數據傳輸的波特率取決于編程時指定的波特率因子,為發送器時鐘頻率的1、1/16或1/64。當波特率指定為16時,數據傳輸的波特率就是發送器時鐘頻率的1/16。CPU通過數據總線將數據送到8251A的數據輸出緩沖寄存器以后,再傳輸到發送緩沖器,經移位寄存器移位,將并行數據變為串行數據,從TxD端送往外部設備。在8251A接收字符時,命令寄存器的接收允許位RxE(Receiver Enable)必須為1。8251A通過檢測RxD引腳上的低電平來準備接收字符,在沒有字符傳送時RxD端為高電平。8251A不斷地檢測RxD引腳,從RxD端上檢測到低電平以后,便認為是串行數據的起始位,并且啟動接收控制電路中的一個計數器來進行計數,計數器的頻率等于接收器時鐘頻率。計數器是作為接收器采樣定時,當計數到相當于半個數位的傳輸時間時再次對RxD端進行采樣,如果仍為低電平,則確認該數位是一個有效的起始位。若傳輸一個字符需要16個時鐘,那么就是要在計數8個時鐘后采樣到低電平。之后,8251A每隔一個數位的傳輸時間對RxD端采樣一次,依次確定串行數據位的值。串行數據位順序進入接收移位寄存器,通過校驗并除去停止位,變成并行數據以后通過內部數據總線送入接收緩沖器,此時發出有效狀態的RxRDY信號通知CPU,通知CPU8251A已經收到一個有效的數據。一個字符對應的數據可以是5~8位。如果一個字符對應的數據不到8位,8251A會在移位轉換成并行數據的時候,自動把他們的高位補成0。 五、系統總體設計方案根據系統設計的要求,對系統設計的總體方案進行論證分析如下:1.獲取8位開關量可使用實驗臺上的8255A可編程并行接口芯片,因為只要獲取8位數據量,只需使用基本輸入和8位數據線,所以將8255A工作在方式0,PA0-PA7接實驗臺上的8位開關量。2.當使用串口進行數據傳送時,雖然同步通信速度遠遠高于異步通信,可達500kbit/s,但由于其需要有一個時鐘來實現發送端和接收端之間的同步,硬件電路復雜,通常計算機之間的通信只采用異步通信。3.由于8251A本身沒有時鐘,需要外部提供,所以本設計中使用實驗臺上的8253芯片的計數器2來實現。4:顯示和鍵盤輸入均使用DOS功能調用來實現。設計思路框圖,如下圖所示: 六、硬件設計硬件電路主要分為8位開關量數據獲取電路,串行通信數據發送電路,串行通信數據接收電路三個部分。1.8位開關量數據獲取電路該電路主要是利用8255并行接口讀取8位乒乓開關的數據。此次設計在獲取8位開關數據量時采用8255令其工作在方式0,A口輸入8位數據,CS#接實驗臺上CS1口,對應端口為280H-283H,PA0-PA7接8個開關。2.串行通信電路串行通信電路本設計中8253主要為8251充當頻率發生器,接線如下圖所示。
上傳時間: 2013-12-19
上傳用戶:小火車啦啦啦
串行通信的特點串行通信是主機與外設交換信息的一種方式。串行通信中字節數據經一條傳輸線按位串行發送與串行接收。串行通信節省通信線路,可遠距離傳送,成本低,廣泛應用在通信及計算機網絡系統中。串行通信中,數據傳輸速率低,控制較復雜。光纖技術的出現與發展,為串行通信開辟了美好前景。串行通信的術語全雙工、半雙工、單工全雙工: 通信雙方均有發送器和接收器,經兩條獨立的傳輸線相連, 雙方可同時接收與發送。 全雙工、半雙工、單工半雙工:通信雙方均有發送器和接收器,經一條傳輸線相連, 在某一時刻雙方只能一個方向傳輸信息,線路切換后可改變傳輸方向。 全雙工、半雙工、單工單工:通信一方為發送器,另一方為接收器,一條傳輸線相連, 進行單向傳輸。同步與異步通信方式同步方式:通信雙方用統一時鐘控制通信過程, 信息傳輸組成數據包(數據幀)。每 幀頭尾是控制代碼,中間是數據塊, 可有數百字節。不同的同步傳輸協 議有不同的數據幀格式。
上傳時間: 2013-11-19
上傳用戶:wvbxj
1. RS-232-C 詳解 22. 串口通信基本接線方法 123. 串口通訊的概念及接口電路 134. 有關RS232和RS485接口的問答 145. 同步通信方式 166. 通信協議197. 實戰串行通訊258. 全雙工和半雙工方式 339. 淺析PC 機串口通訊流控制 3410. 奇偶校驗 3511. 開發通信軟件的技術與技巧 3612. 接口技術的基本知識 4113. 一個單片機串行數據采集/傳輸模塊的設計 4414. 單工、半雙工和全雙工的定義 4815. 從RS232 端口獲得電源4916. 串行同步通信的應用5017. 串行通信波特率的一種自動檢測方法5318. RS-232、RS-422 與RS-485 標準及應用5619. 串口泵 6串行通信接口標準經過使用和發展,目前已經有幾種。但都是在RS-232標準的基礎上經過改進而形成的。所以,以RS-232C為主來討論。RS-323C 標準是美國EIA(電子工業聯合會)與BELL等公司一起開發的1969 年公布的通信協議。它適合于數據傳輸速率在0~20000b/s 范圍內的通信。這個標準對串行通信接口的有關問題,如信號線功能、電器特性都作了明確規定。由于通行設備廠商都生產與RS-232C制式兼容的通信設備,因此,它作為一種標準,目前已在微機通信接口中廣泛采用。在討論RS-232C 接口標準的內容之前,先說明兩點:首先,RS-232-C標準最初是遠程通信連接數據終端設備DTE(Data Terminal Equipment)與數據通信設備DCE(Data Communication Equipment)而制定的。因此這個標準的制定,并未考慮計算機系統的應用要求。但目前它又廣泛地被借來用于計算機(更準確的說,是計算機接口)與終端或外設之間的近端連接標準。顯然,這個標準的有些規定及和計算機系統是不一致的,甚至是相矛盾的。有了對這種背景的了解,我們對RS-232C標準與計算機不兼容的地方就不難理解了。其次,RS-232C 標準中所提到的“發送”和“接收”,都是站在DTE 立場上,而不是站在DCE 的立場來定義的。由于在計算機系統中,往往是CPU 和I/O設備之間傳送信息,兩者都是DTE,因此雙方都能發送和接收。
上傳時間: 2013-11-21
上傳用戶:crazyer
采用基于TI公司高性能Davinci系列的SEED-DTK_6437作為主要硬件平臺,實現TMS320DM6437與TMS320VC5402處理器之間的通信。在DSP集成開發環境CCS3.3中采用C語言和匯編語言混合編程,對攝像頭采集到的實時視頻圖像實現了變倍算法從軟件到硬件平臺的移植。同時加入人機接口,實現了系統縮放倍數的切換、變倍算法的選擇和感興趣區域的提取等功能。測試結果表明,系統具有交互性強、性能穩定和實時性良好等特點。
上傳時間: 2013-10-10
上傳用戶:MATAIYES
TI公司推出的CCS3.3開發環境中文入門指導書
上傳時間: 2013-10-20
上傳用戶:dalidala