高級(jí)數(shù)據(jù)鏈路控制規(guī)程,是由ISO開(kāi)發(fā),面向比特的數(shù)據(jù)鏈路層協(xié)議,具有差錯(cuò)檢測(cè)功能強(qiáng)大、高效和同步傳輸?shù)牡忍攸c(diǎn),是通信領(lǐng)域中應(yīng)用最廣泛的協(xié)議之一。隨著大規(guī)模電路的集成度和工藝水平不斷提高,ARM處理器上的高級(jí)數(shù)據(jù)鏈路控制器外設(shè),幾乎涵蓋了HDLC規(guī)程常用的大部分子集。利用ARM芯片對(duì)HDLC通信過(guò)程進(jìn)行控制,將具有成本低廉、靈活性好、便于擴(kuò)展為操作系統(tǒng)下的應(yīng)用程序等優(yōu)點(diǎn)。本文在這一背景下,提出了在ARM下實(shí)現(xiàn)鏈路層傳輸?shù)姆桨福诜桨钢袑?shí)現(xiàn)了基于HDLC協(xié)議子集的簡(jiǎn)單協(xié)議。 本文以嵌入式的高速發(fā)展為背景,對(duì)基于ARM核微處理器的鏈路層通信規(guī)程進(jìn)行研究,闡述了HDLC幀的結(jié)構(gòu)、特點(diǎn)和工作原理,提出了在ARM芯片上實(shí)現(xiàn)HDLC規(guī)程的兩種方法,同時(shí)給出其設(shè)計(jì)方案、關(guān)鍵代碼和調(diào)試方法。其中,重點(diǎn)對(duì)無(wú)操作系統(tǒng)時(shí)中斷模式下,以及基于操作系統(tǒng)時(shí)ARM芯片上實(shí)現(xiàn)HDLC規(guī)程的方法進(jìn)行了探討設(shè)計(jì)。
標(biāo)簽: ARM 高級(jí)數(shù)據(jù)鏈路控制規(guī)程
上傳時(shí)間: 2013-08-04
上傳用戶:時(shí)代將軍
嵌入式網(wǎng)絡(luò)視頻監(jiān)控系統(tǒng)是一種以嵌入式技術(shù)、視頻編碼技術(shù)和網(wǎng)絡(luò)傳輸技術(shù)為核心的新型視頻監(jiān)控系統(tǒng),它在穩(wěn)定性、實(shí)時(shí)性、處理速度、功能、價(jià)格、擴(kuò)展性等方面和傳統(tǒng)的視頻監(jiān)控系統(tǒng)相比有著突出的優(yōu)勢(shì),同時(shí)也代表著目前視頻監(jiān)控系統(tǒng)研究和發(fā)展的方向。 本文研究并實(shí)現(xiàn)了以微處理器S3C2440和嵌入式Linux操作系統(tǒng)為核心的嵌入式網(wǎng)絡(luò)視頻監(jiān)控系統(tǒng)。論文首先介紹了嵌入式視頻監(jiān)控技術(shù)的發(fā)展趨勢(shì)和研究現(xiàn)狀,而后闡述了該系統(tǒng)硬件總體設(shè)計(jì)方案,討論了基于嵌入式Linux操作系統(tǒng)的開(kāi)發(fā)平臺(tái)的構(gòu)建,詳細(xì)論述了視頻采集、編碼、存儲(chǔ)、傳輸?shù)葐卧能浻布O(shè)計(jì),重點(diǎn)論述了基于AL9V576的視頻編碼模塊和基于TW2835的視頻處理模塊的設(shè)計(jì)。 本文研究的主要內(nèi)容如下: 1、研究視頻采集單元的優(yōu)化方法,設(shè)計(jì)采用音視頻控制器TW2835采集四路模擬視頻輸入信號(hào)并疊加OSD環(huán)境信息顯示,提高了視頻處理的功能和視頻質(zhì)量; 2、研究雙核構(gòu)架,采用混合信號(hào)系統(tǒng)級(jí)芯片C8051F340控制TW2835、采集環(huán)境信息并與S3C2440串口通信,使視頻采集單元模塊化設(shè)計(jì),增加了產(chǎn)品設(shè)計(jì)的靈活性,減小了主控芯片的負(fù)擔(dān)和軟件設(shè)計(jì)的復(fù)雜性,便于產(chǎn)品功能的擴(kuò)展和二次開(kāi)發(fā); 3、研究并分析了MPEG-4的硬件實(shí)現(xiàn)方式,采用高品質(zhì)、高性能、低功率視頻壓縮芯片AL9V576進(jìn)行MPEG-4編碼,大幅提升了壓縮效率,另外還設(shè)計(jì)了SRAM主機(jī)接口與主控芯片通信,突破了傳統(tǒng)芯片大多采用的PCI接口的限制,方便模塊的組合; 4、研究并設(shè)計(jì)了CF卡存儲(chǔ)方案,實(shí)現(xiàn)了一種在嵌入式視頻服務(wù)器上的視頻檢索和存儲(chǔ)方法。
標(biāo)簽: ARM 嵌入式遠(yuǎn)程 視頻監(jiān)控系統(tǒng)
上傳時(shí)間: 2013-05-16
上傳用戶:cuicuicui
根據(jù)機(jī)械電子工程類專業(yè)測(cè)控實(shí)驗(yàn)教學(xué)平臺(tái)數(shù)據(jù)采集的需要,在綜合考慮成本和性能基礎(chǔ)上,提出以為主處理芯片的數(shù)據(jù)采集卡設(shè)計(jì)方案。 該方案的主要特點(diǎn)是,使用基于ARM7TDMI內(nèi)核的,工作主頻最高可達(dá)44MHz;內(nèi)置高性能的ADC和DAC模塊,采樣速度最高可達(dá)1MSPS,采樣精度為12位;模擬信號(hào)輸入通道最多可達(dá)16路,模擬信號(hào)輸出通道最高可達(dá)4路;具有豐富的外設(shè)資源可以使用,GPIO口數(shù)目最高可達(dá)40個(gè)。 在設(shè)計(jì)中采用了模塊化思想,將系統(tǒng)分為四個(gè)功能模塊:主模塊的功能是控制ADC進(jìn)行信號(hào)采集和DAC進(jìn)行模擬信號(hào)輸出;模擬信號(hào)模塊的作用是對(duì)傳感器輸入信號(hào)和DAC輸出波形進(jìn)行簡(jiǎn)單的調(diào)理;數(shù)字信號(hào)模塊引出32路數(shù)字I/O口,可用于需要采集數(shù)字量的場(chǎng)合;JTAG模塊可進(jìn)行程序的調(diào)試和下載,對(duì)于數(shù)據(jù)采集卡的二次開(kāi)發(fā)有很大的作用。 在本數(shù)據(jù)采集卡上,嘗試進(jìn)行了μC/OSⅡ操作系統(tǒng)的移植,成功實(shí)現(xiàn)了四個(gè)任務(wù)的管理。在實(shí)際應(yīng)用中,工作數(shù)小時(shí)仍可保持正常的運(yùn)行。 為檢驗(yàn)數(shù)據(jù)采集卡的串口通訊能力,利用LabVIEW程序讀取下位機(jī)串口發(fā)送的已采集到的數(shù)據(jù),進(jìn)行波形圖繪制。 為檢驗(yàn)本數(shù)據(jù)采集卡的ADC和DAC精度,設(shè)計(jì)實(shí)驗(yàn)利用DAC輸出波形,并利用ADC將采集到的波形通過(guò)LabVIEW顯示,測(cè)量結(jié)果顯示兩者電壓值誤差均在可允許的3LSB(Least Significant Bit)范圍內(nèi),表明本數(shù)據(jù)采集卡已基本實(shí)現(xiàn)預(yù)期設(shè)計(jì)指標(biāo)。
標(biāo)簽: ARM 數(shù)據(jù)采集卡
上傳時(shí)間: 2013-04-24
上傳用戶:bruce
遠(yuǎn)程監(jiān)控系統(tǒng)是許多重要場(chǎng)所諸如電力、郵電、銀行、交通、商場(chǎng)等需要信息廣泛交流企業(yè)的生產(chǎn)與管理的必備系統(tǒng)。傳統(tǒng)遠(yuǎn)程監(jiān)控系統(tǒng)的實(shí)現(xiàn)方式一般都需要自己建設(shè)并維護(hù)有線或無(wú)線網(wǎng)絡(luò),維護(hù)費(fèi)用高,通信距離有限。隨著通信技術(shù)的發(fā)展,原有的遠(yuǎn)程監(jiān)控系統(tǒng)已經(jīng)日益不能滿足多方面的要求,我們需要實(shí)時(shí)性更高,通信距離更遠(yuǎn),成本更低的通信方式,本文就此提出了一種基于GPRS的遠(yuǎn)程數(shù)據(jù)監(jiān)控系統(tǒng)。 本文的創(chuàng)新點(diǎn)是采用了GPRS技術(shù)中的TCP傳輸方式來(lái)傳輸監(jiān)控系統(tǒng)采集的圖像數(shù)據(jù),相比傳統(tǒng)有線網(wǎng)絡(luò),在維護(hù)成本,通信距離上有了很大的提高,相比傳統(tǒng)無(wú)線網(wǎng)絡(luò)在實(shí)時(shí)性,傳輸速率,可靠性上有了明顯的改善。 本論文分幾個(gè)部分詳細(xì)介紹了課題的研究?jī)?nèi)容。第一部分主要介紹了課題背景和監(jiān)控系統(tǒng)的發(fā)展歷史及各類監(jiān)控系統(tǒng)的比較。第二部分描述了本監(jiān)控系統(tǒng)中遠(yuǎn)程終端硬件系統(tǒng)搭建工作,包括各部分器件的選取以及在S3C4480為核心的開(kāi)發(fā)板上擴(kuò)展出LM9617接口。第三部分描述了以u(píng)C/OS操作系統(tǒng)為核心的遠(yuǎn)程終端軟件設(shè)計(jì)流程,包括uC/OS操作系統(tǒng)和FAT16文件系統(tǒng)的移植,LCD顯示驅(qū)動(dòng), Nand-flash底層驅(qū)動(dòng)的編寫等工作。第四部分詳細(xì)說(shuō)明了本系統(tǒng)圖像采集的具體軟件實(shí)現(xiàn),包括根據(jù)實(shí)際情況配置CMOS圖像傳感器LM9617的寄存器以及從LM9617中讀取圖像數(shù)據(jù)然后將數(shù)據(jù)寫入Nand-flash存儲(chǔ)器的具體過(guò)程。第五部分詳細(xì)說(shuō)明了本系統(tǒng)圖像數(shù)據(jù)傳輸?shù)木唧w軟件實(shí)現(xiàn),采用的是GPRS企業(yè)公網(wǎng)組網(wǎng)方式,包括遠(yuǎn)程終端程序設(shè)計(jì)和監(jiān)控中心服務(wù)器搭建兩部分工作。遠(yuǎn)程終端程序設(shè)計(jì)包括初始化串口通信,將Nand-flash中的圖像數(shù)據(jù)讀出并通過(guò)GPRS模塊GM862發(fā)送到監(jiān)控中心服務(wù)器上;監(jiān)控中心服務(wù)器程序設(shè)計(jì)包括啟動(dòng)建立并啟動(dòng)Socket監(jiān)聽(tīng),以及收到連接請(qǐng)求后GPRS通信鏈路的建立。最后分別用TCP和UDP兩種傳輸方式對(duì)監(jiān)控系統(tǒng)進(jìn)行了測(cè)試,證明了GPRS的TCP傳輸方式確實(shí)更適合于監(jiān)控系統(tǒng)。
標(biāo)簽: GPRS ARM 無(wú)線數(shù)據(jù)傳輸 監(jiān)控系統(tǒng)
上傳時(shí)間: 2013-07-19
上傳用戶:liuwei6419
近年來(lái),隨著控制系統(tǒng)規(guī)模的擴(kuò)大和總線技術(shù)的發(fā)展,對(duì)數(shù)據(jù)采集和傳輸技術(shù)提出了更高的要求。目前,很多設(shè)備需要實(shí)現(xiàn)從單串口通信到多路串口通信的技術(shù)改進(jìn)。同時(shí),隨著以太網(wǎng)技術(shù)的發(fā)展和普及,這些設(shè)備的串行數(shù)據(jù)需要通過(guò)網(wǎng)絡(luò)進(jìn)行傳輸,因而有必要尋求一種解決方案,以實(shí)現(xiàn)技術(shù)上的革新。 本文分別對(duì)串行通信和基于TCP/IP協(xié)議的以太網(wǎng)通信進(jìn)行研究和分析,在此基礎(chǔ)上,設(shè)計(jì)一個(gè)嵌入式系統(tǒng)一基于APM處理器的多路串行通信與以太網(wǎng)通信系統(tǒng),來(lái)實(shí)現(xiàn)F8-DCS系統(tǒng)中多路串口數(shù)據(jù)采集和以太網(wǎng)之間的數(shù)據(jù)傳輸。主要作了如下工作:首先,分析了當(dāng)前串行通信的應(yīng)用現(xiàn)狀和以太網(wǎng)技術(shù)的發(fā)展動(dòng)態(tài),通過(guò)比較傳統(tǒng)的多路串口通信系統(tǒng)的優(yōu)缺點(diǎn),設(shè)計(jì)出了一種采用CPID技術(shù)和CAN總線技術(shù)相結(jié)合的新型技術(shù),并結(jié)合F8-DCS系統(tǒng)數(shù)據(jù)量大和實(shí)時(shí)性高的特點(diǎn),對(duì)串行通訊幀同步的方法進(jìn)行了詳細(xì)的研究。然后,根據(jù)課題的實(shí)際需求,對(duì)系統(tǒng)進(jìn)行總體設(shè)計(jì)和功能模塊劃分,并詳細(xì)介紹了基于ARM7處理器的多路串口通信接口、以太網(wǎng)通信接口以及二者之間的數(shù)據(jù)傳輸接口的電路設(shè)計(jì)。在軟件設(shè)計(jì)上,對(duì)系統(tǒng)的啟動(dòng)代碼、串行通信協(xié)議、串口驅(qū)動(dòng)以及多串口與網(wǎng)口間雙向數(shù)據(jù)傳輸?shù)冗M(jìn)行了詳細(xì)的論述。最后,將上述技術(shù)應(yīng)用于某大型火電廠主機(jī)F8-DCS系統(tǒng)I/O通訊網(wǎng)絡(luò)的測(cè)試與分析,達(dá)到了設(shè)計(jì)要求。
上傳時(shí)間: 2013-07-31
上傳用戶:aeiouetla
本文首先在介紹多用戶檢測(cè)技術(shù)的原理以及系統(tǒng)模型的基礎(chǔ)上,對(duì)比分析了幾種多用戶檢測(cè)算法的性能,給出了算法選擇的依據(jù)。為了同時(shí)克服多址干擾和多徑干擾,給出了融合多用戶檢測(cè)與分集合并技術(shù)的接收機(jī)結(jié)構(gòu)。 接著,針對(duì)WCDMA反向鏈路信道結(jié)構(gòu),介紹了擴(kuò)頻使用的OVSF碼和擾碼,分析了擾碼的延時(shí)自相關(guān)特性和互相關(guān)特性,指出了存在多址干擾和多徑干擾的根源。在此基礎(chǔ)上,給出了解相關(guān)檢測(cè)器的數(shù)學(xué)公式推導(dǎo)和結(jié)構(gòu)框圖,并仿真研究了用戶數(shù)、擴(kuò)頻比、信道估計(jì)精度等參數(shù)對(duì)系統(tǒng)性能的影響。 常規(guī)的干擾抵消是基于chip級(jí)上的抵消,需要對(duì)用戶信號(hào)重構(gòu),因此具有較高的復(fù)雜度。在解相關(guān)檢測(cè)器的基礎(chǔ)上,衍生出符號(hào)級(jí)上的干擾抵消。通過(guò)仿真,給出了算法中涉及的干擾抑制控制權(quán)值、干擾抵消級(jí)數(shù)等參數(shù)的最佳取值,并進(jìn)行了算法性能比較。仿真結(jié)果驗(yàn)證了該算法的有效性。 最后,介紹了WCDMA系統(tǒng)移動(dòng)臺(tái)解復(fù)用技術(shù)的硬件實(shí)現(xiàn),在FPGA平臺(tái)上分別實(shí)現(xiàn)了與基站和安捷倫8960儀表的互聯(lián)互通。
標(biāo)簽: WCDMA FPGA 多用戶檢測(cè) 下行鏈路
上傳時(shí)間: 2013-07-29
上傳用戶:jiangxin1234
隨著電信數(shù)據(jù)傳輸對(duì)速率和帶寬的要求變得越來(lái)越迫切,原有建成的網(wǎng)絡(luò)是基于話音傳輸業(yè)務(wù)的網(wǎng)絡(luò),已不能適應(yīng)當(dāng)前的需求.而建設(shè)新的寬帶網(wǎng)絡(luò)需要相當(dāng)大的投資且建設(shè)工期長(zhǎng),無(wú)法滿足特定客戶對(duì)高速數(shù)據(jù)傳輸?shù)慕谛枨?反向復(fù)用技術(shù)是把一個(gè)單一的高速數(shù)據(jù)流在發(fā)送端拆散并放在兩個(gè)或者多個(gè)低速數(shù)據(jù)鏈路上進(jìn)行傳輸,在接收端再還原為高速數(shù)據(jù)流.該文提出一種基于FPGA的多路E1反向復(fù)用傳輸芯片的設(shè)計(jì)方案,使用四個(gè)E1構(gòu)成高速數(shù)據(jù)的透明傳輸通道,支持E1線路間最大相對(duì)延遲64ms,通過(guò)鏈路容量調(diào)整機(jī)制,可以動(dòng)態(tài)添加或刪除某條E1鏈路,實(shí)現(xiàn)靈活、高效的利用現(xiàn)有網(wǎng)絡(luò)實(shí)現(xiàn)視頻、數(shù)據(jù)等高速數(shù)據(jù)的傳輸,能夠節(jié)省帶寬資源,降低成本,滿足客戶的需求.系統(tǒng)分為發(fā)送和接收兩部分.發(fā)送電路實(shí)現(xiàn)四路E1的成幀操作,數(shù)據(jù)拆分采用線路循環(huán)與幀間插相結(jié)合的方法,A路插滿一幀(30時(shí)隙)后,轉(zhuǎn)入B路E1間插數(shù)據(jù),依此類推,循環(huán)間插所有的數(shù)據(jù).接收電路進(jìn)行HDB3解碼,幀同步定位(子幀同步和復(fù)幀同步),線路延遲判斷,FIFO和SDRAM實(shí)現(xiàn)多路數(shù)據(jù)的對(duì)齊,最后按照約定的高速數(shù)據(jù)流的幀格式輸出數(shù)據(jù).整個(gè)數(shù)字電路采用Verilog硬件描述語(yǔ)言設(shè)計(jì),通過(guò)前仿真和后仿真的驗(yàn)證.以30萬(wàn)門的FPGA器件作為硬件實(shí)現(xiàn),經(jīng)過(guò)綜合和布線,特別是寫約束和增量布線手動(dòng)調(diào)整電路的布局,降低關(guān)鍵路徑延時(shí),最終滿足設(shè)計(jì)要求.
標(biāo)簽: FPGA 多路 傳輸 片的設(shè)計(jì)
上傳時(shí)間: 2013-07-16
上傳用戶:asdkin
如今電力電子電路的控制旨在實(shí)現(xiàn)高頻開(kāi)關(guān)的計(jì)算機(jī)控制,并向著更高頻率、更低損耗和全數(shù)字化的方向發(fā)展。現(xiàn)場(chǎng)可編程門陣列器件(FieldProgrammableGateArrays)是近年來(lái)嶄露頭角的一類新型集成電路,它具有簡(jiǎn)潔、經(jīng)濟(jì)、高速度、低功耗等優(yōu)勢(shì),又具有全集成化、適用性強(qiáng),便于開(kāi)發(fā)和維護(hù)(升級(jí))等顯著優(yōu)點(diǎn)。與單片機(jī)和DSP相比,F(xiàn)PGA的頻率更高、速度更快,這些特點(diǎn)順應(yīng)了電力電子電路的日趨高頻化和復(fù)雜化發(fā)展的需要。因此,在越來(lái)越多的領(lǐng)域中FPGA得到了日益廣泛的發(fā)展和應(yīng)用。 本文提出了一種采用現(xiàn)場(chǎng)可編程門陣列(FPGA)器件實(shí)現(xiàn)數(shù)字化通用PWM控制器的方案。該控制器能產(chǎn)生多路PWM脈沖,具有開(kāi)關(guān)頻率可調(diào)、各路脈沖間的相位可調(diào)、接口簡(jiǎn)單、響應(yīng)速度快、易修改、可現(xiàn)場(chǎng)編程等特點(diǎn),可應(yīng)用于PWM的全數(shù)字化控制。文中對(duì)方案的實(shí)現(xiàn)進(jìn)行了比較詳細(xì)的論述,包括A/D采樣控制、PI算法的實(shí)現(xiàn)、PWM波形的產(chǎn)生、各模塊的工作原理等。 本文還提出一種新型ZCT-PWMBoost變換器,詳細(xì)的分析了該變換器的工作過(guò)程,并采用基于FPGA的數(shù)字化通用PWM控制器對(duì)這種軟開(kāi)關(guān)Boost變換器進(jìn)行控制,給出了比較完滿的實(shí)驗(yàn)結(jié)果。實(shí)驗(yàn)結(jié)果驗(yàn)證了該控制器以及該ZCTBoost變換器的可行性和有效性,
標(biāo)簽: FPGA PWM 數(shù)字化 制器設(shè)計(jì)
上傳時(shí)間: 2013-07-10
上傳用戶:x4587
目前,以互聯(lián)網(wǎng)業(yè)務(wù)為代表的網(wǎng)絡(luò)應(yīng)用,正快速地向包括數(shù)據(jù)、語(yǔ)音、圖像的綜合寬帶多媒體方向發(fā)展,構(gòu)建寬帶化、大容量、全業(yè)務(wù)、智能化的現(xiàn)代通信網(wǎng)絡(luò)已成為大勢(shì)所趨.寬帶無(wú)線接入(BWA)憑借其組網(wǎng)快速靈活、運(yùn)營(yíng)維護(hù)方便及成本較低等競(jìng)爭(zhēng)優(yōu)勢(shì),迅速成為市場(chǎng)熱點(diǎn),各種微波、無(wú)線通信領(lǐng)域的先進(jìn)手段和方法不斷引入,各種寬帶無(wú)線接入技術(shù)迅速涌現(xiàn).由于BWA要用于非視距傳輸,所以必須考慮無(wú)線信道的多經(jīng)效應(yīng).而OFDM技術(shù)憑借著魯棒的對(duì)抗頻率選擇性衰落能力和極高頻譜效率引起了學(xué)術(shù)界和工業(yè)界的高度重視.其基本思想是把調(diào)制在單載波上的高速串行數(shù)據(jù)流,分成多路低速的數(shù)據(jù)流,調(diào)制到多個(gè)正交載波上并行傳輸,這樣在傳輸時(shí),雖然整個(gè)信道是頻率選擇性衰落,但是各個(gè)子信道卻是平坦衰落,有效對(duì)抗了多經(jīng)效應(yīng),同時(shí)由于各個(gè)子載波是正交的,極大提高了頻譜效率.可以預(yù)料的是,隨著通信系統(tǒng)將向基于IPv6核心網(wǎng)的全I(xiàn)P包的傳輸方向發(fā)展,越來(lái)越多的通信系統(tǒng)將具有"突發(fā)模式"的特征.本文關(guān)注的正是突發(fā)OFDM系統(tǒng)接收機(jī)設(shè)計(jì)和實(shí)現(xiàn).由于IEEE 802.11a無(wú)線局域網(wǎng)是OFDM技術(shù)第一次真正的應(yīng)用于突發(fā)系統(tǒng),實(shí)現(xiàn)了面向IP的無(wú)線寬帶傳輸,所以基于IEEE 802.11a的突發(fā)OFDM系統(tǒng)有著重要的借鑒和研究?jī)r(jià)值,本文也正是圍繞著這個(gè)中心而展開(kāi).本文的各章節(jié)安排如下:在第一章中主要介紹OFDM的技術(shù)原理和在寬帶無(wú)線接入中的應(yīng)用,同時(shí)引出本文所關(guān)注的突發(fā)OFDM接收機(jī)設(shè)計(jì).在第二章中先介紹了相干接收和信道估計(jì)的概念,重點(diǎn)分析了本文所采用的WLAN信道模型和信道估計(jì)算法,然后在得到同步誤差表達(dá)式的基礎(chǔ)上,先用星座圖直觀的表現(xiàn)OFDM系統(tǒng)中各種同步誤差的影響,再?gòu)男旁氡葥p失的角度對(duì)符種同步誤差進(jìn)行分析.第三章是本文的重點(diǎn)之一,在本章中對(duì)基于IEEE 802.11a的各種同步算法包括幀檢測(cè)和符號(hào)定時(shí)、載波同步和采樣時(shí)鐘同步進(jìn)行仿真和比較,并針對(duì)適合FPGA實(shí)現(xiàn)的同步算法進(jìn)行了重點(diǎn)的分析.第四章也是本文的重點(diǎn)之一,提出了整個(gè)OFDM系統(tǒng)平臺(tái)的硬件結(jié)構(gòu)和基于IEEE 802.11a的接收機(jī)FPGA設(shè)計(jì)方案,然后從整體上介紹了接收機(jī)的實(shí)現(xiàn)結(jié)構(gòu),并給出了接收機(jī)各個(gè)模塊的具體設(shè)計(jì),最后對(duì)整個(gè)系統(tǒng)調(diào)試過(guò)程和測(cè)試結(jié)果進(jìn)行了分析.
上傳時(shí)間: 2013-04-24
上傳用戶:zhoujunzhen
本文主要介紹了基于FPGA的無(wú)線信道盲均衡器的設(shè)計(jì)與實(shí)現(xiàn),在算法上選擇了比較成熟的DDLMS和CMA相結(jié)合的算法,結(jié)構(gòu)上采用四路正交FIR濾波器模型.在設(shè)計(jì)的過(guò)程中我們采取了用MATLAB進(jìn)行算法仿真,VerilogHDL語(yǔ)言進(jìn)行FPGA設(shè)計(jì)的策略.在硬件描述語(yǔ)言的設(shè)計(jì)流程中,信道盲均衡器運(yùn)用了Top-Down的模塊化設(shè)計(jì)方法,大大縮短了設(shè)計(jì)周期,提高了系統(tǒng)的穩(wěn)定性和可擴(kuò)展性.測(cè)試結(jié)果表明均衡器所有的性能指標(biāo)均達(dá)到預(yù)定目標(biāo),且工作性能良好,均衡效果較為理想,能夠滿足指標(biāo)要求.本課題所設(shè)計(jì)和實(shí)現(xiàn)的信道盲均衡器,為FPGA芯片設(shè)計(jì)技術(shù)做了有益的探索性嘗試,對(duì)今后無(wú)線通信系統(tǒng)中的單芯片可編程系統(tǒng)(SOPC)的設(shè)計(jì)運(yùn)用有著積極的借鑒意義.
標(biāo)簽: FPGA 無(wú)線信道 仿真 均衡器
上傳時(shí)間: 2013-05-28
上傳用戶:huyiming139
蟲蟲下載站版權(quán)所有 京ICP備2021023401號(hào)-1