在電力系統(tǒng)容量日益擴大和電網(wǎng)電壓運行等級不斷提高的潮流下,傳統(tǒng)電磁式互感器在運行中暴露出越來越多的弊端,難以滿足電力系統(tǒng)向自動化、標準化和數(shù)字化的發(fā)展需求,電子式互感器取代傳統(tǒng)電磁式互感器已經(jīng)成為一種必然的趨勢,并成為人們研究的熱點。本文圍繞電子式電流互感器高壓側(cè)數(shù)據(jù)采集系統(tǒng)進行了研究與設計。 Rogowski線圈是電流傳感元件,本文總紿了Rogowski線圈的基本原理,其中包括線圈的等效電路和相量圖,線圈的電磁參數(shù)計算。在理論研究的基礎上,結(jié)合實際設計一款高精度PCBRogowski線圈。電容分壓器是電壓傳感元件,文章中介紹了傳感器的原理、傳感器的模型結(jié)構,針對其自身結(jié)構缺陷和工作環(huán)境的電磁干擾,提出具有針對性的電磁兼容設計方法。 積分器的性能一直是影響Rogowski線圈電流傳感器的精度和穩(wěn)定性的重要因素之一。模擬積分器具有結(jié)構簡單、響應速度快、輸入動態(tài)范圍大等優(yōu)點;數(shù)字積分器具有性能穩(wěn)定,精度高等優(yōu)點。后者的優(yōu)勢使其成為近年來Rogowski線圈電流互感器實用化研究的一個熱點問題。本文設計了一套數(shù)字積分器設計的方法,其中包括了積分算法的選擇,積分輸入采樣率和分辨率的確定,數(shù)字積分器的通用結(jié)構,積分初值的選擇方法等。 為了保證系統(tǒng)的運行穩(wěn)定,文章中的系統(tǒng)只采用激光供電模式,降低數(shù)據(jù)采集系統(tǒng)的功耗就成了系統(tǒng)設計的一個重要環(huán)節(jié)。文章中介紹了一些實用的低功耗處理方法,分析了激光器的特性,光電池的特性和光電轉(zhuǎn)換器件的特性,并根據(jù)這些器件的特性,改進了數(shù)據(jù)發(fā)送激光器的驅(qū)動電路,大幅度降低了系統(tǒng)的功耗,保證了系統(tǒng)在較低供電功率條件下的正常運行。 論文最后對全文工作進行總結(jié),提出進一步需要解決的問題。
標簽: 電子式互感器 數(shù)據(jù)采集系統(tǒng)
上傳時間: 2013-07-10
上傳用戶:zsjzc
該系統(tǒng)是一款磁卡閱讀存儲器,根據(jù)用戶要求解決了普通閱讀器只能實時連接計算機,不能單獨使用的問題。而且針對作為特殊用途的磁卡,要求三道磁道都記錄數(shù)據(jù),并且第三磁道記錄格式與標準規(guī)定的記錄格式不同時,系統(tǒng)配套的應用程序?qū)ζ渥隽苏_譯碼、顯示。 @@ 整個系統(tǒng)包括單片機控制的閱讀存儲器硬件部分,和配套使用的計算機界面應用程序軟件部分。其中硬件電路包括磁條譯碼芯片、外部存儲器芯片、串口電平轉(zhuǎn)換芯片等等,所有的工作過程都是由單片機控制。我們這里選用紫外線擦除的87C52單片機,電路使用的集成電路芯片都是采用SMT封裝器件,極大縮小了讀存器的體積,使用簡單,攜帶方便。 @@ 磁條譯碼芯片采用的是中青科技有限公司出品的M3-230.LQ F/2F解碼器集成電路。該IC實現(xiàn)了磁信號到電信號的轉(zhuǎn)換。外部存儲器則是使用的8K Bytes的24LC65集成芯片,擴展8片,總?cè)萘窟_到8×8K。 @@ MAXIM公司出品的MAX232實現(xiàn)了單片機TTL電平到RS232接口電平的轉(zhuǎn)換,從而與計算機串口實現(xiàn)硬件連接。 @@ 計算機界面顯示程序采用當今使用最廣的面向?qū)ο缶幊陶Z言Visual Basic 6.0版本(以后簡稱VB),并且使用VB帶有的串口通信控件MScomm,通過設置其屬性,使其和下位機單片機協(xié)議保持一致,進而進行正確的串口通信。關于磁道上數(shù)據(jù)記錄的譯碼,則是通過對每條磁道上數(shù)據(jù)記錄進行多次實驗,認真分析,進而得到了各條磁道各自的編碼規(guī)則,按照其規(guī)則對其譯碼顯示。這部分程序也是通過VB編程語言實現(xiàn)的。另外,計算機應用程序部分還實現(xiàn)了對下位機讀存器的擦除控制。 @@關鍵詞:磁卡,閱讀存儲器,單片機,串口通信,track3數(shù)據(jù)譯碼
上傳時間: 2013-08-05
上傳用戶:黃華強
近年來,多電平逆變器在高壓大容量電能變換中得到廣泛應用,而其控制策略和電路拓撲等已成為了研究熱點。相對傳統(tǒng)的兩電平逆變器,它具有效率高動態(tài)性能好,對電動機產(chǎn)生的諧波少,適合高壓大容量等優(yōu)點。但隨著電平數(shù)的增加,基本控制算法越來越復雜,同時還存在中點電壓不平衡等問題。將DSP數(shù)字控制技術應用于多電平逆變器不僅簡化了系統(tǒng)的硬件控制電路,提高了系統(tǒng)性能,還可以實現(xiàn)系統(tǒng)的優(yōu)化控制。 本文以二極管箝位式三電平逆變器為研究對象,首先介紹了三電平逆變器的拓撲結(jié)構和工作原理,對三電平逆變器的電路方程進行了深入的分析,在開關函數(shù)的基礎上建立了三電平逆變器的數(shù)學模型。在此基礎上,對空間電壓矢量脈寬調(diào)制(SVPWM)算法進行了改進,并詳細推導了該調(diào)制算法的計算公式,結(jié)合中點電位控制來確定開關矢量的作用順序,使仿真和實現(xiàn)都比較容易。然后重點分析了三電平逆變器直流側(cè)電容電壓不平衡問題產(chǎn)生的原因,提出了一種能控制逆變器直流側(cè)電容中點電位平衡的電壓空間矢量脈寬調(diào)制方法。最后采用MATLAB仿真軟件對所推導的三電平逆變器SVPWM調(diào)制算法和中點電位平衡控制方法進行了仿真分析,證明了該調(diào)制算法的正確性和可行性。
上傳時間: 2013-05-20
上傳用戶:PresidentHuang
隨著環(huán)境污染的惡化和能源危機問題的凸現(xiàn),低污染、高節(jié)能的電動汽車的研究和應用成為當今汽車產(chǎn)業(yè)的發(fā)展趨勢。作為電動汽車所必須的輔助設備—充電電源,其安全性、高效性及便攜性是影響電動汽車廣泛推廣的關鍵因素。因此,發(fā)展高效可靠的充電電源已成為電動汽車領域的重點研究方向之一。本論文以移相全橋直流變換器為基礎,系統(tǒng)研究了移相全橋變換器控制策略和電路拓撲中的重要問題,研制一套適用于電動汽車的充電電源。論文的主要研究工作包括: 介紹電動汽車充電電源的充電方式以及軟開關全橋技術,并對蓄電池的各種充電方式進行比較。 分析了移相全橋直流變換器的基本原理,對現(xiàn)今的幾種零電壓零電流(ZVZCS)移相全橋變換的主電路拓撲比較,選擇一種具有副邊簡單輔助電路的移相全橋作為主電路拓撲,結(jié)合所需電源的具體參數(shù),對主電路拓撲各元件進行設計,對主電路的工作過程分析,建立了其等效電路小信號模型。利用MATLAB中的SIMULINK仿真模塊對主電路進行仿真,證明了主電路參數(shù)設計的合理性。 設計了以DSP為控制核心的電源系統(tǒng),實現(xiàn)移相全橋控制、輸出電流電壓調(diào)制和過流過壓保護等功能,采用中斷功能實現(xiàn)移相PWM脈沖的軟件生成方法,給出了系統(tǒng)主程序、中斷服務程序、鍵盤及LCD顯示的程序流程圖。 最后給出樣機的實驗結(jié)果和分析。結(jié)果表明,在任何負載下,超前臂能夠較好的實現(xiàn)零電壓開關,在小于半載的情況下,滯后臂能夠較好實現(xiàn)零電流開關。
上傳時間: 2013-05-29
上傳用戶:dreamboy36
非接觸電能傳輸技術是一門新興的能量傳輸技術,它集合了電力電子能量傳輸技術、磁場耦合技術以及現(xiàn)代控制理論。由于這種電能傳輸方式?jīng)]有接觸摩擦,可減少對設備的損傷,不會產(chǎn)生易引燃引爆的火花,解決了給移動設備特別是在惡劣環(huán)境下,工作設備的供電問題。在交通運輸、航空航天、機器人、醫(yī)療器械、照明、便攜式電子產(chǎn)品、礦井和水下應用等場合有著廣泛的應用前景。本文對非接觸電能傳輸技術進行了理論和實驗研究。主要研究內(nèi)容如下: ⑴介紹了非接觸電能傳輸技術的國內(nèi)外研究現(xiàn)狀,發(fā)展前景,基本原理與所涉及到的關鍵技術。 ⑵通過建立漏感模型,對采用各種補償方式時,補償電容的選擇進行了分析與研究,并對不同補償方式時,負載對系統(tǒng)傳輸效率的影響進行了分析。 ⑶介紹了PWM調(diào)制硬開關技術、軟開關技術,比較分析了應用于無接觸電能傳輸系統(tǒng)主變換器的幾種逆變器拓撲結(jié)構,詳細分析了移相全橋變換器的工作原理,在此基礎上,對變換器進行改進,提出了基于移相全橋控制的諧振變換器,并對變換器的工作原理進行了詳細分析。 ⑷對系統(tǒng)原副邊主電路的主要參數(shù)進行了分析與設計,對松耦合變壓器的結(jié)構選擇、主要參數(shù)進行了分析與設計。 ⑸分別用通用DSP芯片TMS320F2812和專用控制芯片UC3875對系統(tǒng)的控制電路進行了設計。 ⑹對系統(tǒng)進行了仿真研究,在仿真成功的基礎上,采用UC3875控制方案制作了實驗樣機,進行了實驗研究。
上傳時間: 2013-07-19
上傳用戶:libenshu01
太陽能發(fā)電在世界能源危機的今天飛速發(fā)展,已成為新能源的主流之一。逆變器作為主要的能量變換裝置器件,其性能的好壞直接影響著整個光伏系統(tǒng)的效率。本文采用電壓外環(huán)、電流內(nèi)環(huán)的雙環(huán)控制策略,保證了系統(tǒng)的動態(tài)響應速度快,穩(wěn)態(tài)誤差小。為此,論文主要對系統(tǒng)的電路拓撲結(jié)構、數(shù)學模型、控制方法以及基于FPGA的軟件實現(xiàn)方法等技術進行了分析研究。 本文首先通過對幾種常見的數(shù)學模型分析方法的比較,選擇適合本文的數(shù)學建模方法。文中給出了逆變器的拓撲結(jié)構,詳細論述了其工作原理,對該逆變器不同工作狀態(tài)下的等效電路進行分析,并利用狀態(tài)空間平均法建立了逆變器數(shù)學模型,確定主要元件的參數(shù)。 隨后對當前比較流行的幾種逆變電路的控制方法進行了對比分析。本文采用的基于SPWM控制的電壓電流雙環(huán)控制的算法,具有開關頻率固定、物理意義清晰、實現(xiàn)方便的優(yōu)點,保證系統(tǒng)的穩(wěn)態(tài)誤差小,動態(tài)響應速度快。通過分析幾種最大功率跟蹤算法各自的優(yōu)缺點,最后給出了改進的最大功率跟蹤算法,保證系統(tǒng)輸出最大功率。 最后用FPGA實現(xiàn)了系統(tǒng)控制方案的設計。整機測試結(jié)果表明:該逆變器的性能指標基本達到了設計要求,驗證了數(shù)學模型和控制策略的有效性和理論分析的正確性和可行性。
上傳時間: 2013-07-25
上傳用戶:時代將軍
電壓空間矢量脈沖寬度調(diào)制技術是一種性能優(yōu)越、易于數(shù)字化實現(xiàn)的脈沖寬度調(diào)制方案。在常規(guī)SVPWM算法中,判定等效電壓空間矢量所處扇區(qū)位置時需要進行坐標旋轉(zhuǎn)和反正切三角函數(shù)的運算,計算特定電壓空間矢量作用時間時需要進行正弦、余弦三角函數(shù)的運算以及過飽和情況下的歸一化處理過程,同時,在整個SVPWM算法中還包含了無理數(shù)的運算,這些復雜計算不可避免地會產(chǎn)生大量計算誤差,對高精度實時控制產(chǎn)生不可忽視的影響,而且這些復雜運算的計算量大,對系統(tǒng)的處理速度要求高,程序設計復雜,系統(tǒng)運行時間長,占用系統(tǒng)資源多。因此,從工程實際應用的角度出發(fā),需要對常規(guī)SVPWM算法進行優(yōu)化設計。 本文提出的優(yōu)化SVPWM算法,只需進行普通的四則運算,計算非常簡單,克服了上述常規(guī)SVPWM算法中的缺點,同時,采用交叉分配零電壓空間矢量,并將零電壓空間矢量的切換點置于各扇區(qū)中點的方法,達到降低三相橋式逆變電路中開關器件開關損耗的目的。SVPWM算法要求高速的數(shù)據(jù)處理能力,傳統(tǒng)的MCU、DSP都難以滿足其要求,而具有高速數(shù)據(jù)處理能力的FPGA/CPLD則可以很好的實現(xiàn)SVPWM的控制功能,在實時性、靈活性等方面有著MCU、DSP無法比擬的優(yōu)越性。本文利用MATLAB/Simulink軟件對優(yōu)化的SVPWM系統(tǒng)原型進行建模和仿真,當仿真效果達到SVPWM系統(tǒng)控制要求后,在XilinxISE環(huán)境下采用硬件描述語言設計輸入方法與原理圖設計輸入方法相結(jié)合的混合設計輸入方法進行FPGA/CPLD的電路設計與輸入,建立相同功能的SVPWM系統(tǒng)模型,然后利用ISESimulator(VHDL/Verilog)仿真器進行功能仿真和性能分析,驗證了本文提出的SVPWM優(yōu)化設計方案的可行性和有效性。
上傳時間: 2013-06-27
上傳用戶:小儒尼尼奧
雙向DC/DC變換器(Bi-directionalDC/DCconverters)是能夠根據(jù)需要調(diào)節(jié)能量雙向傳輸?shù)闹绷?直流變換器。隨著科技的發(fā)展,雙向DC/DC變換器的應用需求越來越多,正逐步應用到無軌電車、地鐵、列車、電動車等直流電機驅(qū)動系統(tǒng),直流不間斷電源系統(tǒng),航天電源等場合。一方面,雙向DC/DC變換器為這些系統(tǒng)提供能量,另一方面,又使可回收能量反向給供電端充電,從而節(jié)約能量。 大多數(shù)雙向DC/DC變換器采用復雜的輔助網(wǎng)絡來實現(xiàn)軟開關技術,本文所研究的Buck/Boost雙向的DC/DC變換器從拓撲上解決器件軟開關的問題;由于Buck/Boost雙向DC/DC變換器的電流紋波較大,這會帶來嚴重的電磁干擾,本文結(jié)合Buck/Boost雙向DC/DC變換器拓撲與磁耦合技術使電感電流紋波減小;由于在同一頻率下不同負載時電流紋波不同,本文在控制時根據(jù)負載改變PWM頻率,從而使輕載時的電流紋波均較小。 本文所研究的雙向DC/DC變換器采用DSP處理器進行控制,其原因在于:目前沒有專門用于控制該Buck/Boost雙向DC/DC變換器的控制芯片,而DSP具有多路的高分辨率PWM,通過對DSP寄存器的配置可以實現(xiàn)Buck/Boost雙向DC/DC變換器的控制PWM;DSP具有多路高速的A/D轉(zhuǎn)換接口,并可以通過配合PWM完成對反饋采樣,具備一定的濾波功能。 本文所研究的數(shù)字雙向DC/DC變換器實現(xiàn)了在Buck模式下功率MOSFET的零電壓開通及零電壓關斷,電感電流的交迭使其電感輸出端電流紋波明顯變小,輕載時PWM頻率的提升也使得電流紋波變小。
上傳時間: 2013-06-08
上傳用戶:cy_ewhat
逆變電源的發(fā)展是和電力電子器件的發(fā)展聯(lián)系在一起的,隨著現(xiàn)代電力電子技術的迅猛發(fā)展,逆變電源在許多領域的應用也越來越廣泛,同時對逆變電源輸出電壓波形質(zhì)量提出了越來越高的要求。逆變電源輸出波形質(zhì)量主要包括三個方面:一是輸出穩(wěn)定精度高;二是動態(tài)性能好;三是帶負載適應性強。因此開發(fā)既具有結(jié)構簡單,又具有優(yōu)良動、靜態(tài)性能和負載適應性的逆變電源,一直是研究者在逆變電源方面追求的目標。本文對逆變電源三閉環(huán)控制方案、輸出相位控制、逆變電源數(shù)字化控制系統(tǒng)進行研究,以期得到具有高品質(zhì)和高可靠性的逆變電源。 本文研究了單相全橋逆變電源與三相橋式逆變電源主電路參數(shù),包括逆變器、吸收電路、驅(qū)動電路、變壓器和濾波器,并對逆變電源變壓器的偏磁產(chǎn)生原因進行了深入分析,最后給出了有效的抗偏磁措施。針對三相橋式逆變電源通常不能保證三相電壓輸出平衡,研究了一種可以帶不平衡負載的三相逆變電源。研究了逆變電源的控制原理,建立了逆變電源系統(tǒng)動態(tài)模型,在此基礎上對逆變電源的各種控制方案的性能進行了對比研究,從而確定了一種新穎的高性能逆變電源多閉環(huán)控制方案。另外,針對逆變電源輸出相位存在固有滯后問題,采用了一種利用電壓瞬時值內(nèi)環(huán)對逆變電源滯后的相角進行補償控制的策略,分析表明上述控制策略雖然有效,但無法做到輸出相角穩(wěn)態(tài)無差,對此,提出一種移相控制方案設想,相當于在原多環(huán)控制方案的基礎上加了一個相位控制環(huán)。這樣可以使逆變電源輸出相位誤差得到有效的補償,輸出相位精度更高。文章設計了逆變電源數(shù)字控制系統(tǒng),采用TMS320LF2407A控制產(chǎn)生SPWM波,給出控制系統(tǒng)DSP程序運行流程圖,并用DSP對其進行了實現(xiàn)數(shù)字化。多環(huán)反饋控制系統(tǒng)的采用,使系統(tǒng)具有優(yōu)異的穩(wěn)態(tài)特性、動態(tài)特性和對非線性負載的適應性,使逆變電源的性能得到有效提高。
上傳時間: 2013-04-24
上傳用戶:tianjinfan
繞組勵磁同步電機具有功率因數(shù)可調(diào)、效率高等優(yōu)點,在工業(yè)大功率場合獲得了廣泛應用,因此研究和開發(fā)高性能的繞組勵磁同步電機驅(qū)動系統(tǒng)具有重大的經(jīng)濟價值和社會效益。目前開發(fā)高性能繞組勵磁同步電機驅(qū)動系統(tǒng)所采用的控制方案主要有兩種:一種是直接轉(zhuǎn)矩控制(DTFC);另一種是磁場定向矢量控制(FOC)。繞組勵磁同步電機的矢量控制策略具有控制結(jié)構簡單,物理概念清晰,電流、轉(zhuǎn)矩波動小,轉(zhuǎn)速響應迅速,易實現(xiàn)數(shù)字控制等優(yōu)點。因此,在交流傳動領域中,越來越受到學者的關注。但是,無論在國內(nèi)還是國外,交直交型繞組勵磁同步電機矢量控制系統(tǒng)的研究還缺乏全面深入的理論研究,還沒有建造起矢量控制系統(tǒng)的理論體系構架。本文對繞組勵磁同步電機矢量控制系統(tǒng)進行了初步的理論探討,并進行了詳細的實踐研究,為以后更深入、廣泛地研究此系統(tǒng),打好堅實的基礎。本論文主要研究內(nèi)容如下: @@ 通過廣泛的查找文獻,對幾種常見的同步電機傳動系統(tǒng)進行了綜述,分析了同步電機變頻調(diào)速原理,在此基礎上,講述了無傳感器技術在同步電機中的應用現(xiàn)狀。無傳感器技術主要有兩大類:基于基波量的檢測方法和基于外加信號的激勵法。隨后,對轉(zhuǎn)子初始位置的估計進行了綜述,其方法有:基于電機定子鐵芯飽和效應的轉(zhuǎn)子位置估計,高頻信號注入法,基于定子繞組感應電壓的估計法和基于相電感計算法等。繞組勵磁同步電機轉(zhuǎn)子初始位置估計的研究還很少。 @@ 對繞組勵磁同步電機矢量控制的理論進行了全面深入地研究,建立起矢量控制的理論體系構架。 @@ 首先,基于磁勢等效原理,將三相靜止交流信號等效變換為兩相旋轉(zhuǎn)直流信號,將交流電機等效為直流電機進行控制。在Clarke變換和Park變換的基礎上,得到凸極同步電機轉(zhuǎn)子磁場定向的電壓矩陣方程、功率方程和運動方程。根據(jù)上述方程,繪出dq軸的等值電路及矢量圖,得到狀態(tài)空間描述的dq軸數(shù)學模型。 @@ 其次,根據(jù)模型參考自適應原理,對同步電機轉(zhuǎn)速進行估計。忽略同步電機d軸阻尼繞組的作用,取同步轉(zhuǎn)速為零,得到同步電機αβ靜止坐標系下 的數(shù)學模型。將不含有轉(zhuǎn)子轉(zhuǎn)速信息的方程作為參考模型,將含有轉(zhuǎn)速參數(shù)的方程作為可調(diào)模型,根據(jù)波波夫超穩(wěn)定性和正性原理,對轉(zhuǎn)子轉(zhuǎn)速進行估計。@@ 最后,根據(jù)模型參考自適應估計的轉(zhuǎn)子轉(zhuǎn)速,設計磁通觀測器來估計轉(zhuǎn)子磁通,實現(xiàn)磁通反饋閉環(huán)控制。磁通觀測器采用降維觀測器,僅對轉(zhuǎn)子磁通分量進行重構,并通過極點配置算法,合理配置觀測器的極點,使觀測器滿足系統(tǒng)的性能指標,達到磁通觀測的目的。 @@ 新穎的空間矢量脈寬調(diào)制算法。從空間矢量的基本概念入手,深入分析了定子三相對稱電壓與空間電壓矢量之間的關系。由三相電壓源型逆變器輸出電壓波形得到六個有效開關狀態(tài)矢量,這六個開關矢量和兩個零矢量合成一組等幅不同相的電壓空間矢量,去逼近圓形旋轉(zhuǎn)磁場。其次,根據(jù)空間電壓矢量所在的扇區(qū),選擇相鄰有效開關矢量,在伏秒平衡的法則下,計算各有效開關矢量的作用時間。并且,探討了扇區(qū)判斷和扇區(qū)過渡問題,定性分析了空間矢量脈寬調(diào)制(SVPWM)的性能。最后,根據(jù)每個扇區(qū)中開關矢量作用時間,采用軟件構造法,在TMS320LF2407A硬件上實現(xiàn)了SVPWM。實驗結(jié)果表明,該算法簡單易實現(xiàn),能夠有效的提高直流母線的電壓利用率,具有在低頻運行穩(wěn)定,逆變器輸出電流正弦度好等優(yōu)點。 @@ 空間矢量過調(diào)制算法的研究。在上述線性調(diào)制的基礎上,提出一種基于電壓空間矢量的過調(diào)制方法。過調(diào)制區(qū)域根據(jù)調(diào)制度分成兩種不同的模式,分別為模式Ⅰ(0.907
上傳時間: 2013-07-25
上傳用戶:gaorxchina