亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

顯示模塊

  • SPCE061A單片機硬件結構

    SPCE061A單片機硬件結構 從第一章中SPCE061A的結構圖可以看出SPCE061A的結構比較簡單,在芯片內部集成了ICE仿真電路接口、FLASH程序存儲器、SRAM數據存儲器、通用IO端口、定時器計數器、中斷控制、CPU時鐘、模-數轉換器AD、DAC輸出、通用異步串行輸入輸出接口、串行輸入輸出接口、低電壓監測低電壓復位等若干部分。各個部分之間存在著直接或間接的聯系,在本章中我們將詳細的介紹每個部分結構及應用。2.1 μ’nSP™的內核結構μ’nSP™的內核如0所示其結構。它由總線、算術邏輯運算單元、寄存器組、中斷系統及堆棧等部分組成,右邊文字為各部分簡要說明。算術邏輯運算單元ALUμ’nSP™的ALU在運算能力上很有特色,它不僅能做16位基本的算術邏輯運算,也能做帶移位操作的16位算術邏輯運算,同時還能做用于數字信號處理的16位×16位的乘法運算和內積運算。1. 16位算術邏輯運算不失一般性,μ’nSP™與大多數CPU類似,提供了基本的算術運算與邏輯操作指令,加、減、比較、取補、異或、或、與、測試、寫入、讀出等16位算術邏輯運算及數據傳送操作。2. 帶移位操作的16位算邏運算對圖2.1稍加留意,就會發現μ’nSP™的ALU前面串接有一個移位器SHIFTER,也就是說,操作數在經過ALU的算邏操作前可先進行移位處理,然后再經ALU完成算邏運算操作。移位包括:算術右移、邏輯左移、邏輯右移、循環左移以及循環右移。所以,μ’nSP™的指令系統里專有一組復合式的‘移位算邏操作’指令;此一條指令完成移位和算術邏輯操作兩項功能。程序設計者可利用這些復合式的指令,撰寫更精簡的程序代碼,進而增加程序代碼密集度 (Code Density)。在微控制器應用中,如何增加程序代碼密集度是非常重要的議題;提高程序代碼密集度意味著:減少程序代碼的大小,進而減少ROM或FLASH的需求,以此降低系統成本與增加執行效能。

    標簽: SPCE 061A 061 單片機

    上傳時間: 2013-10-10

    上傳用戶:星仔

  • 用單片機AT89C51改造普通雙桶洗衣機

    用單片機AT89C51改造普通雙桶洗衣機:AT89C2051作為AT89C51的簡化版雖然去掉了P0、P2等端口,使I/O口減少了,但是卻增加了一個電壓比較器,因此其功能在某些方面反而有所增強,如能用來處理模擬量、進行簡單的模數轉換等。本文利用這一功能設計了一個數字電容表,可測量容量小于2微法的電容器的容量,采用3位半數字顯示,最大顯示值為1999,讀數單位統一采用毫微法(nf),量程分四檔,讀數分別乘以相應的倍率。電路工作原理  本數字電容表以電容器的充電規律作為測量依據,測試原理見圖1。電源電路圖。 壓E+經電阻R給被測電容CX充電,CX兩端原電壓隨充電時間的增加而上升。當充電時間t等于RC時間常數τ時,CX兩端電壓約為電源電壓的63.2%,即0.632E+。數字電容表就是以該電壓作為測試基準電壓,測量電容器充電達到該電壓的時間,便能知道電容器的容量。例如,設電阻R的阻值為1千歐,CX兩端電壓上升到0.632E+所需的時間為1毫秒,那么由公式τ=RC可知CX的容量為1微法。  測量電路如圖2所示。A為AT89C2051內部構造的電壓比較器,AT89C2051 圖2 的P1.0和P1.1口除了作I/O口外,還有一個功能是作為電壓比較器的輸入端,P1.0為同相輸入端,P1.1為反相輸入端,電壓比較器的比較結果存入P3.6口對應的寄存器,P3.6口在AT89C2051外部無引腳。電壓比較器的基準電壓設定為0.632E+,在CX兩端電壓從0升到0.632E+的過程中,P3.6口輸出為0,當電池電壓CX兩端電壓一旦超過0.632E+時,P3.6口輸出變為1。以P3.6口的輸出電平為依據,用AT89C2051內部的定時器T0對充電時間進行計數,再將計數結果顯示出來即得出測量結果。整機電路見圖3。電路由單片機電路、電容充電測量電路和數碼顯示電路等 圖3 部分組成。AT89C2051內部的電壓比較器和電阻R2-R7等組成測量電路,其中R2-R5為量程電阻,由波段開關S1選擇使用,電壓比較器的基準電壓由5V電源電壓經R6、RP1、R7分壓后得到,調節RP1可調整基準電壓。當P1.2口在程序的控制下輸出高電平時,電容CX即開始充電。量程電阻R2-R5每檔以10倍遞減,故每檔顯示讀數以10倍遞增。由于單片機內部P1.2口的上拉電阻經實測約為200K,其輸出電平不能作為充電電壓用,故用R5兼作其上拉電阻,由于其它三個充電電阻和R5是串聯關系,因此R2、R3、R4應由標準值減去1K,分別為999K、99K、9K。由于999K和1M相對誤差較小,所以R2還是取1M。數碼管DS1-DS4、電阻R8-R14等組成數碼顯示電路。本機采用動態掃描顯示的方式,用軟件對字形碼譯碼。P3.0-P3.5、P3.7口作數碼顯示七段筆劃字形碼的輸出,P1.3-P1.6口作四個數碼管的動態掃描位驅動碼輸出。這里采用了共陰數碼管,由于AT89C2051的P1.3-P1.6口有25mA的下拉電流能力,所以不用三極管就能驅動數碼管。R8-R14為P3.0-P3.5、P3.7口的上拉電阻,用以驅動數碼管的各字段,當P3的某一端口輸出低電平時其對應的字段筆劃不點亮,而當其輸出高電平時,則對應的上拉電阻即能點亮相應的字段筆劃。

    標簽: 89C C51 AT 89

    上傳時間: 2013-12-31

    上傳用戶:ming529

  • 多路電壓采集系統

    多路電壓采集系統一、實驗目的1.熟悉可編程芯片ADC0809,8253的工作過程,掌握它們的編程方法。2.加深對所學知識的理解并學會應用所學的知識,達到在應用中掌握知識的目的。 二、實驗內容與要求1.基本要求通過一個A/D轉換器循環采樣4路模擬電壓,每隔一定時間去采樣一次,一次按順序采樣4路信號。A/D轉換器芯片AD0809將采樣到的模擬信號轉換為數字信號,轉換完成后,CPU讀取數據轉換結果,并將結果送入外設即CRT/LED顯示,顯示包括電壓路數和數據值。2. 提高要求 (1) 可以實現循環采集和選擇采集2種方式。(2)在CRT上繪制電壓變化曲線。 三、實驗報告要求 1.設計目的和內容 2.總體設計 3.硬件設計:原理圖(接線圖)及簡要說明 4.軟件設計框圖及程序清單5.設計結果和體會(包括遇到的問題及解決的方法) 四、總體設計設計思路如下:1) 4路模擬電壓信號通過4個電位器提供0-5V的電壓信號。2) 選擇ADC0809芯片作為A/D轉換器,4路輸入信號分別接到ADC0809的IN0—IN4通道,每隔一定的時間采樣一次,采完一路采集下一路,4路電壓循環采集。3) 利用3個LED數碼管顯示數據,1個數碼管用來顯示輸入電壓路數,3個數碼管用來顯示電壓采樣值。4) 延時由8253定時/計數器來實現。 五、硬件電路設計根據設計思路,硬件主要利用了微機實驗平臺上的ADC0809模數轉換器、8253定時/計數器以及LED顯示輸出等模塊。電路原理圖如下:1.基本接口實驗板部分1) 電位計模塊,4個電位計輸出4路1-5V的電壓信號。2) ADC0809模數轉換器,將4路電壓信號接到IN0-IN3,ADD_A、ADD_B、ADD_C分別接A0、A1、A2,CS_AD接CS0時,4個采樣通道對應的地址分別為280H—283H。3) 延時模塊,8253和8255組成延時電路。8255的PA0接到8253的OUT0,程序中查詢計數是否結束。硬件電路圖如圖1所示。 圖1 基本實驗板上的電路圖實驗板上的LED顯示部分實驗板上主要用到了LED數碼管顯示電路,插孔CS1用于數碼管段碼的輸出選通,插孔CS2用于數碼管位選信號的輸出選通。電路圖如圖2所示。

    標簽: 多路 電壓采集

    上傳時間: 2013-11-06

    上傳用戶:sunchao524

  • 新穎實用的單片機雙積分A/D轉換電路和軟件

    新穎實用的單片機雙積分A/D轉換電路和軟件:摘 要: 通過對雙積分A/ D 轉換過程及其原理的分析,結合8031 單片機定時計數器的特點,設計出一種新的A/ D 轉換電路. 詳細介紹了這種轉換電路的硬件原理及工作過程,給出了實用的硬件電路與軟件設計框圖. 通過比較分析,可以看出這種A/ D 轉換電路性能價格比較高,軟件編程簡單,并且轉換速度和精度優于一般的A/ D 轉換電路. 這種設計思路為數模轉換器(A/ D) 的升級提高指出一個明確的方向.關鍵詞:單片機; 定時/ 計數器; A/ D 轉換; 雙積分  雙積分A/ D 及定時計數器原理:我們先分析雙積分A/ D 轉換的工作原理. 如圖1 所示,積分器先以固定時間T 對待測的輸入模擬電壓Vi 進行正向積分,積分電容C 積累的電荷為

    標簽: 單片機 雙積分 轉換電路 軟件

    上傳時間: 2014-01-18

    上傳用戶:hewenzhi

  • 新版交通燈模組(包括PCB圖、使用說明書和產品說明書)

    新版交通燈模組范例代碼、電路原理圖、PCB圖、使用說明書和產品說明書(快速上手)。

    標簽: PCB 交通燈 模組 使用說明書

    上傳時間: 2013-10-20

    上傳用戶:edward_0608

  • RS232串行接口電平轉接器

    RS-232-C 是PC 機常用的串行接口,由于信號電平值較高,易損壞接口電路的芯片,與TTL電平不兼容故需使用電平轉換電路方能與TTL 電路連接。本產品(轉接器),可以實現任意電平下(0.8~15)的UART串行接口到RS-232-C/E接口的無源電平轉接, 使用非常方便可靠。 什么是RS-232-C 接口?采用RS-232-C 接口有何特點?傳輸電纜長度如何考慮?答: 計算機與計算機或計算機與終端之間的數據傳送可以采用串行通訊和并行通訊二種方式。由于串行通訊方式具有使用線路少、成本低,特別是在遠程傳輸時,避免了多條線路特性的不一致而被廣泛采用。 在串行通訊時,要求通訊雙方都采用一個標準接口,使不同 的設備可以方便地連接起來進行通訊。 RS-232-C接口(又稱 EIA RS-232-C)是目前最常用的一種串行通訊接口。它是在1970 年由美國電子工業協會(EIA)聯合貝爾系統、 調制解調器廠家及計算機終端生產廠家共同制定的用于串行通訊的標準。它的全名是“數據終端設備(DTE)和數據通訊設備(DCE)之間串行二進制數據交換接口技術標準”該標準規定采用一個25 個腳的 DB25 連接器,對連接器的每個引腳的信號內容加以規定,還對各種信號的電平加以規定。(1) 接口的信號內容實際上RS-232-C 的25 條引線中有許多是很少使用的,在計算機與終端通訊中一般只使用3-9 條引線。(2) 接口的電氣特性 在RS-232-C 中任何一條信號線的電壓均為負邏輯關系。即:邏輯“1”,-5— -15V;邏輯“0” +5— +15V 。噪聲容限為2V。即 要求接收器能識別低至+3V 的信號作為邏輯“0”,高到-3V的信號 作為邏輯“1”(3) 接口的物理結構 RS-232-C 接口連接器一般使用型號為DB-25 的25 芯插頭座,通常插頭在DCE 端,插座在DTE端. 一些設備與PC 機連接的RS-232-C 接口,因為不使用對方的傳送控制信號,只需三條接口線,即“發送數據”、“接收數據”和“信號地”。所以采用DB-9 的9 芯插頭座,傳輸線采用屏蔽雙絞線。(4) 傳輸電纜長度由RS-232C 標準規定在碼元畸變小于4%的情況下,傳輸電纜長度應為50 英尺,其實這個4%的碼元畸變是很保守的,在實際應用中,約有99%的用戶是按碼元畸變10-20%的范圍工作的,所以實際使用中最大距離會遠超過50 英尺,美國DEC 公司曾規定允許碼元畸變為10%而得出附表2 的實驗結果。其中1 號電纜為屏蔽電纜,型號為DECP.NO.9107723 內有三對雙絞線,每對由22# AWG 組成,其外覆以屏蔽網。2 號電纜為不帶屏蔽的電纜。 2. 什么是RS-485 接口?它比RS-232-C 接口相比有何特點?答: 由于RS-232-C 接口標準出現較早,難免有不足之處,主要有以下四點:(1) 接口的信號電平值較高,易損壞接口電路的芯片,又因為與TTL 電平不兼容故需使用電平轉換電路方能與TTL 電路連接。(2) 傳輸速率較低,在異步傳輸時,波特率為20Kbps。(3) 接口使用一根信號線和一根信號返回線而構成共地的傳輸形式, 這種共地傳輸容易產生共模干擾,所以抗噪聲干擾性弱。(4) 傳輸距離有限,最大傳輸距離標準值為50 英尺,實際上也只能 用在50 米左右。針對RS-232-C 的不足,于是就不斷出現了一些新的接口標準,RS-485 就是其中之一,它具有以下特點:1. RS-485 的電氣特性:邏輯“1”以兩線間的電壓差為+(2—6) V 表示;邏輯“0”以兩線間的電壓差為-(2—6)V 表示。接口信號電平比RS-232-C 降低了,就不易損壞接口電路的芯片, 且該電平與TTL 電平兼容,可方便與TTL 電路連接。2. RS-485 的數據最高傳輸速率為10Mbps3. RS-485 接口是采用平衡驅動器和差分接收器的組合,抗共模干能力增強,即抗噪聲干擾性好。4. RS-485 接口的最大傳輸距離標準值為4000 英尺,實際上可達 3000 米,另外RS-232-C接口在總線上只允許連接1 個收發器, 即單站能力。而RS-485 接口在總線上是允許連接多達128 個收發器。即具有多站能力,這樣用戶可以利用單一的RS-485 接口方便地建立起設備網絡。因RS-485 接口具有良好的抗噪聲干擾性,長的傳輸距離和多站能力等上述優點就使其成為首選的串行接口。 因為RS485 接口組成的半雙工網絡,一般只需二根連線,所以RS485接口均采用屏蔽雙絞線傳輸。 RS485 接口連接器采用DB-9 的9 芯插頭座,與智能終端RS485接口采用DB-9(孔),與鍵盤連接的鍵盤接口RS485 采用DB-9(針)。3. 采用RS485 接口時,傳輸電纜的長度如何考慮?答: 在使用RS485 接口時,對于特定的傳輸線經,從發生器到負載其數據信號傳輸所允許的最大電纜長度是數據信號速率的函數,這個 長度數據主要是受信號失真及噪聲等影響所限制。下圖所示的最大電纜長度與信號速率的關系曲線是使用24AWG 銅芯雙絞電話電纜(線 徑為0.51mm),線間旁路電容為52.5PF/M,終端負載電阻為100 歐 時所得出。(曲線引自GB11014-89 附錄A)。由圖中可知,當數據信 號速率降低到90Kbit/S 以下時,假定最大允許的信號損失為6dBV 時, 則電纜長度被限制在1200M。實際上,圖中的曲線是很保守的,在實 用時是完全可以取得比它大的電纜長度。 當使用不同線徑的電纜。則取得的最大電纜長度是不相同的。例 如:當數據信號速率為600Kbit/S 時,采用24AWG 電纜,由圖可知最 大電纜長度是200m,若采用19AWG 電纜(線徑為0。91mm)則電纜長 度將可以大于200m; 若采用28AWG 電纜(線徑為0。32mm)則電纜 長度只能小于200m。

    標簽: 232 RS 串行接口 電平

    上傳時間: 2013-10-11

    上傳用戶:時代電子小智

  • 基于FPGA技術的偏振模色散自適應補償技術設計與仿真

    我國的骨干通信網上的傳輸速率已經向40 GB/s甚至是160 GB/s發展,傳輸線路以光纖作為主要的傳輸通道。與光纖相關的損耗和單模光纖的主要色散,即偏振模色散,不僅僅限制了光信號在通信過程中的傳輸距離,還很大程度上影響其通信容量。其中,偏振模色散對單模光纖高速和長距離通信的影響尤為突出。因此應現代光纖通信技術網的高速發展的需要,把當前流行的FPGA技術應用到單模光纖的偏振模色散的自適應補償技術中,用硬件描述語言來實現,可以大大提高光纖的偏振模色散自適應補償對實時性和穩定性的要求。

    標簽: FPGA 偏振模 仿真 補償技術

    上傳時間: 2013-11-15

    上傳用戶:zhaiye

  • 基于FPGA的視頻圖像畫面分割器的設計

      系統結構如 圖 1所示 , 從 系統 結 構圖可 以看 出 , 系統主要包括視頻信 號輸入模塊 , 視頻信號處 理模 塊和視頻信號輸出模塊等 3個部分組成。各個模塊主要功能為: 視頻輸入模塊 將 采 集 的 多路 視 頻 信 號 轉 換成 數 字 信 號 送 到F P GA; 視頻處理模塊主要有F P GA 完成 ,根據 需要 對輸入 的數字視頻信號進行處理 ; 視頻輸 出模塊將 F P GA處理后的信號轉換成模擬信號輸出到顯示器。

    標簽: FPGA 視頻圖像 畫面分割器

    上傳時間: 2013-11-11

    上傳用戶:shawvi

  • 船載測控通信設備監控模訓綜合系統的研究

    出于提高船載測控通信設備監控系統信息化水平及模擬訓練能力,在深入研究船載測控通信設備原理及組成的基礎上,利用虛擬儀器技術與HLA技術,以網絡為傳輸媒介,開發了船載測控通信設備監控模訓綜合系統。鑒于設備監控系統與模擬訓練系統共同的特性,該系統利用SQL Server的ADO功能、Web服務和XML技術實現數據的匯總與跨網同步,選用LabWindows/CVI平臺開發監控系統本地監控終端及模訓系統界面,采用Ajax技術架構與VML語言完成數據的Web發布,最終使系統可靠性、接入便捷性、網絡數量流量控制及構件重用性均達到最優。

    標簽: 船載測控 監控

    上傳時間: 2013-11-03

    上傳用戶:風行天下

  • Ka波段TE01模橢圓彎波導的設計

    根據橢圓波導中電磁波的傳播理論與耦合波理論,基于CST仿真軟件,采用了有限積分法設計出了高功率、寬帶寬、高效率的TE01模900過模橢圓彎波導。CST設計仿真表明在中心頻率在30.5 GHz處的傳輸效率為98.8%。傳輸效率在98%以上的帶寬大于2 GHz。

    標簽: 01 TE Ka波段

    上傳時間: 2013-10-22

    上傳用戶:ligi201200

主站蜘蛛池模板: 南陵县| 淮阳县| 南宁市| 哈尔滨市| 荆州市| 方正县| 湛江市| 互助| 马边| 任丘市| 岐山县| 宁明县| 黄陵县| 柳江县| 游戏| 屏东县| 韶关市| 阿勒泰市| 丽江市| 太原市| 英吉沙县| 洪湖市| 和静县| 白朗县| 犍为县| 通城县| 东莞市| 临沭县| 枞阳县| 台北县| 中方县| 专栏| 新源县| 石柱| 宜黄县| 龙胜| 恭城| 黎城县| 怀柔区| 德江县| 定结县|