目前運動控制主要有兩種實現(xiàn)方式,一是使用PLC加運動控制模塊來實現(xiàn):二是使用PC加運動控制卡來實現(xiàn)。兩者各有優(yōu)缺點,但兩者有以下共同的缺點:一是由于它們兒乎都是采用通用微控制器(MCU和DSP)來實現(xiàn)電機控制,由于受CPU速度的限制,以及CPU的多個進程同時處理,故無法在控制精度和控制速度比較高的場合中應用。二是它們的設計只是把運動控制部件當作系統(tǒng)的一個部分,如果要完成一個機械設備的完整控制,還需要輔助有其他的數(shù)字量/模擬量控制設備。這樣在提高了系統(tǒng)成本的同時,也降低了系統(tǒng)的可靠性。 論文設計了一種基于ARM+CPLD的高速運動控制器,該控制器采用高速的CPLD處理器來完成電機的閉環(huán)控制,輔助以NXP的32位ARM7TDMI處理器LPC231X來實現(xiàn)復雜的運動規(guī)劃,使得運動控制精度更高、速度更快、運動更加平穩(wěn);同時為系統(tǒng)擴展了常規(guī)運動控制卡不具備的通用I/O接口,除開4軸運動控制所需要的8點高速脈沖輸入和8點高速脈沖輸出外,系統(tǒng)具有24點數(shù)字量輸入(可選共陰或共陽),25點繼電器輸出,僅一臺這樣的專用設備就可以完成4軸運動控制和設備上其它開關量控制。 系統(tǒng)采用可移植的軟、硬件設計。硬件上以運動控制部件為核心,可以方便的在ARM處理器預留的資源上擴展出數(shù)字輸入,數(shù)字輸出,AD輸入,DA輸出等常用功能模塊。系統(tǒng)軟件構架如下:在最上層,系統(tǒng)采用μC/OS-Ⅱ操作系統(tǒng)來完成系統(tǒng)任務調度;在底層,將底層設備的操作打包編寫成底層驅動的形式,可直接供用戶程序調用;在中間層,可根據(jù)不同的用戶要求編寫用戶程序,再將其傳遞給μC/OS-Ⅱ來調度該用戶程序。 將該運動控制器應用于工業(yè)應用中的套標機,在對套標機進行運動分解之后,結合套標機的電氣特性,很好的實現(xiàn)了運動控制器在套標機上的二次開發(fā),滿足了套標機在現(xiàn)場中的應用。
標簽:
ARMCPLD
運動控制器
上傳時間:
2013-04-24
上傳用戶:牛津鞋
現(xiàn)代自動化生產技術迅猛發(fā)展,對保證其產品質量的檢測技術也提出了更高的要求,許多傳統(tǒng)的檢測手段已不能滿足現(xiàn)代化大生產的需求.而在計算機視覺理論基礎上發(fā)展起來的視覺檢測技術以其高精度、非接觸、自動化程度高等優(yōu)點滿足了現(xiàn)代生產過程在線檢測的要求,逐漸由實驗室走向工業(yè)現(xiàn)場,得到了日益廣泛的應用.隨著現(xiàn)代生產節(jié)拍的不斷加快,以及檢測節(jié)點的增多,處理數(shù)據(jù)量的增大,對視覺檢測系統(tǒng)的測量速度提出了更高的要求,而在現(xiàn)有的檢測系統(tǒng)中,實現(xiàn)100%實時在線檢測的關鍵問題是提高視覺圖像的處理速度,從而提高整個視覺檢測系統(tǒng)的處理速度.因此該文提出基于FPGA的高速圖像處理系統(tǒng)的設計方案,得到了國家"十五"攻關項目"光學數(shù)碼柔性通用坐標測量機"的資助.該文針對以下三個方面進行研究并取得一定的成果:(一)高速圖像處理硬件解決方案的研究通過分析現(xiàn)有的幾種實現(xiàn)高速圖像處理的方法的優(yōu)缺點,提出了基于現(xiàn)場可編程邏輯器件FPGA(Field Programmable Gate Array)技術的高速圖像處理系統(tǒng)的方案,并構建了其硬件平臺.(二)基于USB總線的通訊采用USB專用接口芯片,實現(xiàn)高速圖像處理系統(tǒng)與PC機的通訊驗證硬件設計的正確性.(三)基于FPGA的圖像處理的研究分析圖像處理的特點及其基本的方法,初步研究了基于FPGA的圖像低層次處理的硬件化方法的實現(xiàn).
標簽:
FPGA
高速圖像處理
上傳時間:
2013-04-24
上傳用戶:tb_6877751