亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

高頻開(kāi)關(guān)電源

  • 高增益跨導型運算放大器設計

    運算放大器作為模擬集成電路設計的基礎,同時作為DAC校準電路的一部分,本次設計一個高增益全差分跨導型運算放大器。

    標簽: 增益 運算 放大器設計

    上傳時間: 2013-10-31

    上傳用戶:dvfeng

  • 高共模抑制比儀用放大電路方案

    本文針對傳統儀用放大電路的特點,介紹了一種高共模抑制比儀用放大電路,引入共模負反饋,大大提高了通用儀表放大器的共模抑制能力。

    標簽: 共模抑制比 儀用放大 電路 方案

    上傳時間: 2013-11-10

    上傳用戶:lingfei

  • 在單端應用中采用差分I/O放大器

      Recent advances in low voltage silicon germaniumand BiCMOS processes have allowed the design andproduction of very high speed amplifi ers. Because theprocesses are low voltage, most of the amplifi er designshave incorporated differential inputs and outputs to regainand maximize total output signal swing. Since many lowvoltageapplications are single-ended, the questions arise,“How can I use a differential I/O amplifi er in a single-endedapplication?” and “What are the implications of suchuse?” This Design Note addresses some of the practicalimplications and demonstrates specifi c single-endedapplications using the 3GHz gain-bandwidth LTC6406differential I/O amplifi er.

    標簽: 單端應用 差分 放大器

    上傳時間: 2013-11-23

    上傳用戶:rocketrevenge

  • 高精度Delta-Sigma A/D轉換器原理及其應用

    本次在線座談主要介紹TI的高精度Delta-Sigma A/D轉換器的原理及其應用,Delta-Sigma A/D轉換器在稱重儀器中,大量采用比例測量方法。

    標簽: Delta-Sigma 高精度 轉換器

    上傳時間: 2013-10-17

    上傳用戶:zhqzal1014

  • ADC的九個關鍵指標

        模擬轉換器性能不只依賴分辨率規格   大量的模數轉換器(ADC)使人們難以選擇最適合某種特定應用的ADC器件。工程師們選擇ADC時,通常只注重位數、信噪比(SNR)、諧波性能,但是其它規格也同樣重要。本文將介紹ADC器件最易受到忽視的九項規格,并說明它們是如何影響ADC性能的。   1. SNR比分辨率更為重要。   ADC規格中最常見的是所提供的分辨率,其實該規格并不能表明ADC器件的任何能力。但可以用位數n來計算ADC的理論SNR:   不 過工程師也許并不知道,熱噪聲、時鐘抖動、差分非線性(DNL)誤差以及其它參數異常都會限制ADC器件的SNR。對于高性能高分辨率轉換器尤其如此。一 些數據表提供有效位數(ENOB)規格,它描述了ADC器件所能提供的有效位數。為了計算ADC的ENOB值,應把測量的SNR值放入上述公式,并求解 n。

    標簽: ADC 指標

    上傳時間: 2014-12-22

    上傳用戶:z240529971

  • 寬頻帶高功率射頻脈沖功率放大器

    利用MOS場效應管(MOSFET),采取AB類推挽式功率放大方式,采用傳輸線變壓器寬帶匹配技術,設計出一種寬頻帶高功率射頻脈沖功率放大器模塊,其輸出脈沖功率達1200W,工作頻段0.6M~10MHz。調試及實用結果表明,該放大器工作穩定,性能可靠

    標簽: 寬頻帶 高功率 射頻 脈沖功率放大器

    上傳時間: 2013-11-17

    上傳用戶:waitingfy

  • 高精度程控電壓放大器

    摘要本設計以VCA822、MSP430F2012、DAC7611芯片為核心,加以其它輔助電路實現對寬帶電壓放大器的電壓放大倍數、輸出電壓進行精確控制。放大器的電壓放大倍數從0.2倍到20倍以0.1倍為步進設定,輸出電壓從6mv到600mv以1mv為步進設定,控制誤差不大于5%,放大器的帶寬大于15MHz。鍵盤和顯示電路實現人機交互,完成對電壓放大倍數和輸出電壓的設定和顯示。關鍵詞:程控放大器;高精度;控制電壓;電壓變換;D/A;A/D。

    標簽: 高精度 程控 電壓放大器

    上傳時間: 2013-11-16

    上傳用戶:iswlkje

  • 時鐘分相技術應用

    摘要: 介紹了時鐘分相技術并討論了時鐘分相技術在高速數字電路設計中的作用。 關鍵詞: 時鐘分相技術; 應用 中圖分類號: TN 79  文獻標識碼:A   文章編號: 025820934 (2000) 0620437203 時鐘是高速數字電路設計的關鍵技術之一, 系統時鐘的性能好壞, 直接影響了整個電路的 性能。尤其現代電子系統對性能的越來越高的要求, 迫使我們集中更多的注意力在更高頻率、 更高精度的時鐘設計上面。但隨著系統時鐘頻率的升高。我們的系統設計將面臨一系列的問 題。 1) 時鐘的快速電平切換將給電路帶來的串擾(Crosstalk) 和其他的噪聲。 2) 高速的時鐘對電路板的設計提出了更高的要求: 我們應引入傳輸線(T ransm ission L ine) 模型, 并在信號的匹配上有更多的考慮。 3) 在系統時鐘高于100MHz 的情況下, 應使用高速芯片來達到所需的速度, 如ECL 芯 片, 但這種芯片一般功耗很大, 再加上匹配電阻增加的功耗, 使整個系統所需要的電流增大, 發 熱量增多, 對系統的穩定性和集成度有不利的影響。 4) 高頻時鐘相應的電磁輻射(EM I) 比較嚴重。 所以在高速數字系統設計中對高頻時鐘信號的處理應格外慎重, 盡量減少電路中高頻信 號的成分, 這里介紹一種很好的解決方法, 即利用時鐘分相技術, 以低頻的時鐘實現高頻的處 理。 1 時鐘分相技術 我們知道, 時鐘信號的一個周期按相位來分, 可以分為360°。所謂時鐘分相技術, 就是把 時鐘周期的多個相位都加以利用, 以達到更高的時間分辨。在通常的設計中, 我們只用到時鐘 的上升沿(0 相位) , 如果把時鐘的下降沿(180°相位) 也加以利用, 系統的時間分辨能力就可以 提高一倍(如圖1a 所示)。同理, 將時鐘分為4 個相位(0°、90°、180°和270°) , 系統的時間分辨就 可以提高為原來的4 倍(如圖1b 所示)。 以前也有人嘗試過用專門的延遲線或邏輯門延時來達到時鐘分相的目的。用這種方法產生的相位差不夠準確, 而且引起的時間偏移(Skew ) 和抖動 (J itters) 比較大, 無法實現高精度的時間分辨。 近年來半導體技術的發展, 使高質量的分相功能在一 片芯片內實現成為可能, 如AMCC 公司的S4405, CY2 PRESS 公司的CY9901 和CY9911, 都是性能優異的時鐘 芯片。這些芯片的出現, 大大促進了時鐘分相技術在實際電 路中的應用。我們在這方面作了一些嘗試性的工作: 要獲得 良好的時間性能, 必須確保分相時鐘的Skew 和J itters 都 比較小。因此在我們的設計中, 通常用一個低頻、高精度的 晶體作為時鐘源, 將這個低頻時鐘通過一個鎖相環(PLL ) , 獲得一個較高頻率的、比較純凈的時鐘, 對這個時鐘進行分相, 就可獲得高穩定、低抖動的分 相時鐘。 這部分電路在實際運用中獲得了很好的效果。下面以應用的實例加以說明。2 應用實例 2. 1 應用在接入網中 在通訊系統中, 由于要減少傳輸 上的硬件開銷, 一般以串行模式傳輸 圖3 時鐘分為4 個相位 數據, 與其同步的時鐘信號并不傳輸。 但本地接收到數據時, 為了準確地獲取 數據, 必須得到數據時鐘, 即要獲取與數 據同步的時鐘信號。在接入網中, 數據傳 輸的結構如圖2 所示。 數據以68MBös 的速率傳輸, 即每 個bit 占有14. 7ns 的寬度, 在每個數據 幀的開頭有一個用于同步檢測的頭部信息。我們要找到與它同步性好的時鐘信號, 一般時間 分辨應該達到1ö4 的時鐘周期。即14. 7ö 4≈ 3. 7ns, 這就是說, 系統時鐘頻率應在300MHz 以 上, 在這種頻率下, 我們必須使用ECL inp s 芯片(ECL inp s 是ECL 芯片系列中速度最快的, 其 典型門延遲為340p s) , 如前所述, 這樣對整個系統設計帶來很多的困擾。 我們在這里使用鎖相環和時鐘分相技術, 將一個16MHz 晶振作為時鐘源, 經過鎖相環 89429 升頻得到68MHz 的時鐘, 再經過分相芯片AMCCS4405 分成4 個相位, 如圖3 所示。 我們只要從4 個相位的68MHz 時鐘中選擇出與數據同步性最好的一個。選擇的依據是: 在每個數據幀的頭部(HEAD) 都有一個8bit 的KWD (KeyWord) (如圖1 所示) , 我們分別用 這4 個相位的時鐘去鎖存數據, 如果經某個時鐘鎖存后的數據在這個指定位置最先檢測出這 個KWD, 就認為下一相位的時鐘與數據的同步性最好(相關)。 根據這個判別原理, 我們設計了圖4 所示的時鐘分相選擇電路。 在板上通過鎖相環89429 和分相芯片S4405 獲得我們所要的68MHz 4 相時鐘: 用這4 個 時鐘分別將輸入數據進行移位, 將移位的數據與KWD 作比較, 若至少有7bit 符合, 則認為檢 出了KWD。將4 路相關器的結果經過優先判選控制邏輯, 即可輸出同步性最好的時鐘。這里, 我們運用AMCC 公司生產的 S4405 芯片, 對68MHz 的時鐘進行了4 分 相, 成功地實現了同步時鐘的獲取, 這部分 電路目前已實際地應用在某通訊系統的接 入網中。 2. 2 高速數據采集系統中的應用 高速、高精度的模擬- 數字變換 (ADC) 一直是高速數據采集系統的關鍵部 分。高速的ADC 價格昂貴, 而且系統設計 難度很高。以前就有人考慮使用多個低速 圖5 分相技術應用于采集系統 ADC 和時鐘分相, 用以替代高速的ADC, 但由 于時鐘分相電路產生的相位不準確, 時鐘的 J itters 和Skew 比較大(如前述) , 容易產生較 大的孔徑晃動(Aperture J itters) , 無法達到很 好的時間分辨。 現在使用時鐘分相芯片, 我們可以把分相 技術應用在高速數據采集系統中: 以4 分相后 圖6 分相技術提高系統的數據采集率 的80MHz 采樣時鐘分別作為ADC 的 轉換時鐘, 對模擬信號進行采樣, 如圖5 所示。 在每一采集通道中, 輸入信號經過 緩沖、調理, 送入ADC 進行模數轉換, 采集到的數據寫入存儲器(M EM )。各個 采集通道采集的是同一信號, 不過采樣 點依次相差90°相位。通過存儲器中的數 據重組, 可以使系統時鐘為80MHz 的采 集系統達到320MHz 數據采集率(如圖6 所示)。 3 總結 靈活地運用時鐘分相技術, 可以有效地用低頻時鐘實現相當于高頻時鐘的時間性能, 并 避免了高速數字電路設計中一些問題, 降低了系統設計的難度。

    標簽: 時鐘 分相 技術應用

    上傳時間: 2013-12-17

    上傳用戶:xg262122

  • 簡述PCB線寬和電流關系

      PCB線寬和電流關系公式   先計算Track的截面積,大部分PCB的銅箔厚度為35um(即 1oz)它乘上線寬就是截面積,注意換算成平方毫米。 有一個電流密度經驗值,為15~25安培/平方毫米。把它稱上截面積就得到通流容量。   I=KT(0.44)A(0.75), 括號里面是指數,   K為修正系數,一般覆銅線在內層時取0.024,在外層時取0.048   T為最大溫升,單位為攝氏度(銅的熔點是1060℃)   A為覆銅截面積,單位為square mil.   I為容許的最大電流,單位為安培。   一般 10mil=0.010inch=0.254mm 1A , 250mil=6.35mm 8.3A ?倍數關系,與公式不符 ?  

    標簽: PCB 電流

    上傳時間: 2013-10-11

    上傳用戶:ls530720646

  • 抑制△I噪聲的PCB設計方法

    抑制△I 噪聲一般需要從多方面著手, 但通過PCB 設計抑制△I 噪聲是有效的措施之一。如何通過PCB 設計抑制△I 噪聲是一個亟待深入研究的問題。在對△I 噪聲的產生、特點、主要危害等研究的基礎上, 討論了輻射干擾機理, 重點結合PCB 和EMC 研究的新進展, 研究了抑制△I 噪聲的PCB 設計方法。對通過PCB 設計抑制△I 噪聲的研究與應用具有指導作用。

    標簽: PCB 設計方法

    上傳時間: 2014-12-24

    上傳用戶:時代電子小智

主站蜘蛛池模板: 陆河县| 涿鹿县| 濮阳市| 双江| 双江| 东光县| 昭觉县| 驻马店市| 雷州市| 宣威市| 许昌市| 中牟县| 册亨县| 沿河| 兴义市| 梧州市| 安达市| 高陵县| 永春县| 静乐县| 石首市| 鄂尔多斯市| 电白县| 北流市| 阿合奇县| 克山县| 凤庆县| 蓝田县| 荣成市| 武胜县| 尚义县| 横峰县| 昌黎县| 潞西市| 同德县| 凉城县| 峨山| 荥阳市| 来凤县| 乡宁县| 祁东县|