It is more than a decade since GSM was first commercially available. After some unexpected delay, it seems that finally UMTS is here to stay as a 3G system standardised by 3GPP, at least for another ten years. UMTS will enable multi-service, multi-rate and flexible IP native-based mobile technologies to be used in wide area scenarios and also pave the way for a smooth transition from circuit switched voice networks to mobile packet services.
標簽: Management Strategies Resource Radio
上傳時間: 2020-06-01
上傳用戶:shancjb
Convergence between the two largest networks (Telecom and IP) is taking place very rapidly and at diff erent levels: (1) network level: unifi cation of IP networks with traditional Telecom networks through evolving standards (Session Initiation Protocol (SIP), Realtime Transfer Protocol (RTP), SS7, 3G) to support interopera- bility; (2) service level: traditional Telecom services like voice calls are being provi- sioned on the IP backbone (VoIP), while traditional IP services (most data-driven services such as multimedia, browsing, chatting, gaming, etc.) are accessible over the Telecom network.
標簽: Platforms Delivery Service
上傳時間: 2020-06-01
上傳用戶:shancjb
Software defined radio (SDR) is an exciting new field for the wireless indus- try; it is gaining momentum and beginning to be included in commercial and defense products. The technology offers the potential to revolutionize the way radios are designed, manufactured, deployed, and used. SDR prom- ises to increase flexibility, extend hardware lifetime, lower costs, and reduce time to market
標簽: Software Defined Radio for 3G
上傳時間: 2020-06-01
上傳用戶:shancjb
When 3GPP started standardizing the IMS a few years ago, most analysts expected the number of IMS deploymentsto grow dramatically as soon the initial IMS specifications were ready (3GPP Release 5 was functionallyfrozenin the first half of 2002and completedshortly after that). While those predictions have proven to be too aggressive owing to a number of upheavals hitting the ICT (Information and Communications Technologies) sector, we are now seeing more and more commercial IMS-based service offerings in the market. At the time of writing (May 2008), there are over 30 commercial IMS networks running live traffic, addingup to over10million IMS users aroundthe world; the IMS is beingdeployedglobally. In addition, there are plenty of ongoing market activities; it is estimated that over 130 IMS contracts have been awarded to all IMS manufacturers. The number of IMS users will grow substantially as these awarded contracts are launched commercially. At the same time, the number of IMS users in presently deployed networks is steadily increasing as new services are introduced and operators running these networks migrate their non-IMS users to their IMS networks.
標簽: Multimedia Subsystem The IMS 3G IP
上傳時間: 2020-06-01
上傳用戶:shancjb
Wireless communications has become a field of enormous scientific and economic interest. Recent success stories include 2G and 3G cellular voice and data services (e.g., GSM and UMTS), wireless local area networks (WiFi/IEEE 802.11x), wireless broadband access (WiMAX/IEEE 802.16x), and digital broadcast systems (DVB, DAB, DRM). On the physical layer side, traditional designs typically assume that the radio channel remains constant for the duration of a data block. However, researchers and system designers are increasingly shifting their attention to channels that may vary within a block. In addition to time dispersion caused by multipath propagation, these rapidly time-varying channels feature frequency dispersion resulting from the Doppler effect. They are, thus, often referred to as being “doubly dispersive.”
標簽: Time-Varying Channels
上傳時間: 2020-06-01
上傳用戶:shancjb
During the past three decades, the world has seen signifi cant changes in the telecom- munications industry. There has been rapid growth in wireless communications, as seen by large expansion in mobile systems. Wireless communications have moved from fi rst-generation (1G) systems primarily focused on voice communications to third-generation (3G) systems dealing with Internet connectivity and multi-media applications. The fourth-generation (4G) systems will be designed to connect wire- less personal area networks (WPANs), wireless local area networks (WLANs) and wireless wide-area networks (WWANs).
標簽: Communications Networking Wireless
上傳時間: 2020-06-01
上傳用戶:shancjb
This chapter provides extensive coverage of existing mobile wireless technologies. Much of the emphasis is on the highly anticipated 3G cellular networks and widely deployed wireless local area networks (LANs), as the next-generation smart phones are likely to offer at least these two types of connectivity. Other wireless technologies that either have already been commercialized or are undergoing active research and standardization are introduced as well. Because standardization plays a crucial role in developing a new technology and a market, throughout the discussion standards organizations and industry forums or consortiums of some technologies are introduced. In addition, the last section of this chapter presents a list of standards in the wireless arena.
標簽: Networking Wireless Complete
上傳時間: 2020-06-01
上傳用戶:shancjb
This book paves the path toward fourth generation (4G) mobile communica- tion by introducing mobility in heterogeneous IP networks with both third generation (3G) and wireless local area networks (WLANs), which is seen as one of the central issues in the becoming 4G of telecommunications networks and systems. This book presents a thorough overview of 3G networks and standards and discusses interworking and handover mechanisms between WLANs and the Universal Mobile Telecommunication System (UMTS).
標簽: Wireless towards WLANs WPANs 4G
上傳時間: 2020-06-01
上傳用戶:shancjb
#include <stdio.h> #include <stdlib.h> #define SMAX 100 typedef struct SPNode { int i,j,v; }SPNode; struct sparmatrix { int rows,cols,terms; SPNode data [SMAX]; }; sparmatrix CreateSparmatrix() { sparmatrix A; printf("\n\t\t請輸入稀疏矩陣的行數,列數和非零元素個數(用逗號隔開):"); scanf("%d,%d,%d",&A.cols,&A.terms); for(int n=0;n<=A.terms-1;n++) { printf("\n\t\t輸入非零元素值(格式:行號,列號,值):"); scanf("%d,%d,%d",&A.data[n].i,&A.data[n].j,&A.data[n].v); } return A; } void ShowSparmatrix(sparmatrix A) { int k; printf("\n\t\t"); for(int x=0;x<=A.rows-1;x++) { for(int y=0;y<=A.cols-1;y++) { k=0; for(int n=0;n<=A.terms-1;n++) { if((A.data[n].i-1==x)&&(A.data[n].j-1==y)) { printf("%8d",A.data[n].v); k=1; } } if(k==0) printf("%8d",k); } printf("\n\t\t"); } } void sumsparmatrix(sparmatrix A) { SPNode *p; p=(SPNode*)malloc(sizeof(SPNode)); p->v=0; int k; k=0; printf("\n\t\t"); for(int x=0;x<=A.rows-1;x++) { for(int y=0;y<=A.cols-1;y++) { for(int n=0;n<=A.terms;n++) { if((A.data[n].i==x)&&(A.data[n].j==y)&&(x==y)) { p->v=p->v+A.data[n].v; k=1; } } } printf("\n\t\t"); } if(k==1) printf("\n\t\t對角線元素的和::%d\n",p->v); else printf("\n\t\t對角線元素的和為::0"); } int main() { int ch=1,choice; struct sparmatrix A; A.terms=0; while(ch) { printf("\n"); printf("\n\t\t 稀疏矩陣的三元組系統 "); printf("\n\t\t*********************************"); printf("\n\t\t 1------------創建 "); printf("\n\t\t 2------------顯示 "); printf("\n\t\t 3------------求對角線元素和"); printf("\n\t\t 4------------返回 "); printf("\n\t\t*********************************"); printf("\n\t\t請選擇菜單號(0-3):"); scanf("%d",&choice); switch(choice) { case 1: A=CreateSparmatrix(); break; case 2: ShowSparmatrix(A); break; case 3: SumSparmatrix(A); break; default: system("cls"); printf("\n\t\t輸入錯誤!請重新輸入!\n"); break; } if (choice==1||choice==2||choice==3) { printf("\n\t\t"); system("pause"); system("cls"); } else system("cls"); } }
上傳時間: 2020-06-11
上傳用戶:ccccy
道路車輛——電氣及電子設備的環境條件和試驗
上傳時間: 2021-10-25
上傳用戶: