利用混沌的對初值和參數敏感、偽隨機以及遍歷等特性設計的加密方案,相對傳統加密方案而言,表現出許多優越性能,尤其在快速置亂和擴散數據方面.目前,大多數混沌密碼傾向于軟件實現,這些實現方案中數據串行處理且吞吐量有限,因而不適合硬件實現.該論文分別介紹了適合FPGA(現場可編程門陣列)并行實現的序列密碼和分組密碼方案.序列密碼方案,對傳統LFSR(線性反饋移位寄存器)進行改進,采用非線性的混沌方程代替LFSR中的線性反饋方程,進而構造出基于混沌偽隨機數發生器的加密算法.分組密碼方案,從圖像置亂的快速性考慮,將兩維混沌映射擴展到三維空間;同時,引入另一種混沌映射對圖像數據進行擴散操作,以有效地抵抗統計和差分攻擊.對于這兩種方案,文中給出了VHDL(硬件描述語言)編程、FPGA片內功能模塊設計、加密效果以及硬件性能分析等.其中,序列密碼硬件實現方案,在不考慮通信延時的情況下,可以達到每秒61.622兆字節的加密速度.實驗結果表明,這兩種加密算法的FPGA實現方案是可行的,并且能夠得到較高的安全性和較快的加密速度.
標簽:
FPGA
混沌
加密芯片
技術研究
上傳時間:
2013-04-24
上傳用戶:yx007699
隨著通信網的發展和用戶需求的提高,光纖通信中的PDH體系逐漸被SDH體系所取代.SDH光纖通信系統以其通信容量大、傳輸性能好、接口標準、組網靈活方便、管理功能強大等優點獲得越來越廣泛的應用.但是在某些對傳輸容量需求不大的場合,SDH的巨大潛力和優越性無法發揮出來,反而還會造成帶寬浪費.相反,PDH因其容量適中,配置靈活,成本低廉和功能齊全,可針對客戶不同需要設計不同的方案,在某些特定的接入場合具有一定的優勢.本課題根據現實的需要,提出并設計了一種基于PDH技術的多業務單片FPGA傳輸系統.系統可以同時提供12路E1的透明傳輸和一個線速為100M以太網通道,主要由一塊FPGA芯片實現大部分功能,該解決方案在集成度、功耗、成本以及靈活性等方面都具有明顯的優勢.本文首先介紹數字通信以及數字復接原理和以太網的相關知識,然后詳細闡述了本系統的方案設計,對所使用的芯片和控制芯片FPGA做了必要的介紹,最后具體介紹了系統硬件和FPGA編碼設計,以及后期的軟硬件調試.歸納起來,本文主要具體工作如下:1.實現4路E1信號到1路二次群信號的復分接,主要包括全數字鎖相環、HDB3-NRZ編解碼、正碼速調整、幀頭檢測和復分接等.2.將以太網MII接口來的25M的MII信號通過碼速變換到25.344M,進行映射.3.將三路二次群信號和變換過的以太網MII信號進行5b6b編解碼,以利于在光纖上傳輸.4.高速時提取時鐘采用XILINX的CDR方案.并對接收到的信號經過5b6b解碼后,分接出各路信號.
標簽:
FPGA
PDH
多業務
方案
上傳時間:
2013-07-23
上傳用戶:lansedeyuntkn