假定已經有許多應用采用了程序1 - 1 5中所定義的C u r r e n c y類,現在我們想要對C u r r e n c y類
的描述進行修改,使其應用頻率最高的兩個函數A d d和I n c r e m e n t可以運行得更快,從而提高應
用程序的執行速度。由于用戶僅能通過p u b l i c部分所提供的接口與C u r r e n c y類進行交互,
% EM algorithm for k multidimensional Gaussian mixture estimation
%
% Inputs:
% X(n,d) - input data, n=number of observations, d=dimension of variable
% k - maximum number of Gaussian components allowed
% ltol - percentage of the log likelihood difference between 2 iterations ([] for none)
% maxiter - maximum number of iteration allowed ([] for none)
% pflag - 1 for plotting GM for 1D or 2D cases only, 0 otherwise ([] for none)
% Init - structure of initial W, M, V: Init.W, Init.M, Init.V ([] for none)
%
% Ouputs:
% W(1,k) - estimated weights of GM
% M(d,k) - estimated mean vectors of GM
% V(d,d,k) - estimated covariance matrices of GM
% L - log likelihood of estimates
%
RSA ( Rivest Shamir Adleman )is crypthograph system that used to give a secret information and digital signature . Its security based on Integer Factorization Problem (IFP). RSA uses an asymetric key. RSA was created by Rivest, Shamir, and Adleman in 1977. Every user have a pair of key, public key and private key. Public key (e) . You may choose any number for e with these requirements, 1< e <Æ (n), where Æ (n)= (p-1) (q-1) ( p and q are first-rate), gcd (e,Æ (n))=1 (gcd= greatest common divisor). Private key (d). d=(1/e) mod(Æ (n)) Encyption (C) . C=Mª mod(n), a = e (public key), n=pq Descryption (D) . D=C° mod(n), o = d (private key