隨著社會的發展,人們對電力需求特別是電能質量的要求越來越高。但由于非線性負荷大量使用,卻帶來了嚴重的電力諧波污染,給電力系統安全、穩定、高效運行帶來嚴重影響,給供用電設備造成危害。如何最大限度的減少諧波造成的危害,是目前電力系統領域極為關注的問題。諧波檢測是諧波研究中重要分支,是解決其它相關諧波問題的基礎。因此,對諧波的檢測和研究,具有重要的理論意義和實用價值。 目前使用的電力系統諧波檢測裝置,大多基于微處理器設計。微處理器是作為整個系統的核心,它的性能高低直接決定了產品性能的好壞。而這種微處理器為主體構成的應用系統,存在效率低、資源利用率低、程序指針易受干擾等缺點。由于微電子技術的發展,特別是專用集成電路ASIC(ApplicationSpecificIntegratedCircuit)設計技術的發展,使得設計電力系統諧波檢測專用的集成電路成為可能,同時為諧波檢測裝置的硬件設計提供了一個新的發展途徑。本文目標就是設計電力系統諧波檢測專用集成電路,從而可以實現對電力系統諧波的高精度檢測。采用專用集成電路進行諧波檢測裝置的硬件設計,具有體積小,速度快,可靠性高等優點,由于應用范圍廣,需求量大,電力系統諧波檢測專用集成電路具有很好的應用前景。 本文首先介紹了國內外現行諧波檢測標準,調研了電力系統諧波檢測的發展趨勢;隨后根據裝置的功能需求,特別是依據其中諧波檢測國標參數的測量算法,為系統選定了基于FPGA的SOPC設計方案。 本文分析了電力系統諧波檢測專用集成電路的功能模型,對專用集成電路進行了模塊劃分。定義了各模塊的功能,并研究了模塊間的連接方式,給出了諧波檢測專用集成電路的并行結構。設計了基于FPGA的諧波檢測專用集成電路設計和驗證的硬件平臺。配合專用集成電路的電子設計自動化(EDA)工具構建了智能監控單元專用集成電路的開發環境。 在進行FPGA具體設計時,根據待實現功能的不同特點,分為用戶邏輯區域和Nios處理器模塊兩個部分。用戶邏輯區域控制A/D轉換器進行模擬信號的采樣,并對采樣得到的數字量進行諧波分析等運算。然后將結果存入片內的雙口RAM中,等待Nios處理器的訪問。Nios處理器對數據處理模塊的結果進一步處理,得到其各自對應的最終值,并將結果通過串行通信接口發送給上位機。 最后,對設計實體進行了整體的編譯、綜合與優化工作,并通過邏輯分析儀對設計進行了驗證。在實驗室條件下,對監測指標的運算結果進行了實驗測量,實驗結果表明該監測裝置滿足了電力系統諧波檢測的總體要求。
上傳時間: 2013-04-24
上傳用戶:yw14205
溫濕度是影響糧食儲藏的重要參數,兩者之間是相互關聯的,溫濕度控制不好必然引起糧食發熱和霉變,且極易產生連鎖反應,從而造成難以挽回的損失。溫濕度的控制直接影響到糧食存儲系統的性能。岡此,糧食溫濕度測控技術在農業上的應用是十分重要的。本文研究基于FPGA的糧倉溫濕度監制系統。 設計了基于FPGA的糧倉溫濕度監控系統,該系統主要由溫濕度傳感器、控制電路、單片機和上位機構成。單片機主要完成溫度數據的采集和上位機的通訊;控制電路基于FPGA進行設計,主要負責采集濕度信息,計算溫濕度偏差及其變化率,通過調用模糊控制算法對溫濕度進行模糊控制,單片機通過RS485總線和上位機進行串口通信,使上位機能夠實時記錄,顯示溫濕度變化值和控制過程曲線。該系統實現了糧倉內溫濕度的實時監測,使管理人員可以實時掌控糧倉內的溫濕度情況。 采用FPGA設計控制電路簡化了系統的組成和外圍數字電路,易于系統擴展和升級,內部集成了信號處理、控制、檢測電路,減少了系統的體積,縮短了開發周期,大大增強了系統的可靠性;配合功率驅動、電源等外圍電路,完成信號采集、處理和控制等功能,節省了開發成本,使糧倉溫濕度控制系統更加集成化。這也恰恰更加符合當今電子產品高精度,集成化的要求。 系統采用直接輸出數字量的DS1820溫度傳感器和濕度傳感器HS1101并將HS1101與555定時器組成振蕩電路,其輸出為頻率脈沖信號,與濕度值成線性關系,該頻率脈沖信號可直接送入FPGA進行計數,這樣溫濕度傳感器輸出的信號都沒有經過放大、A/D轉換,進一步減少了測量誤差。控制電路采用了VHDL硬件描述語言進行編寫。本裝置已作出實樣,通過了調試,已達到預期效果。
上傳時間: 2013-06-16
上傳用戶:731140412
軟件無線電是近幾年來提出的一種實現通信的新概念和體制。它的核心是:將寬帶A/D和D/A變換器盡可能地靠近天線,各種功能盡可能地采用軟件進行定義。因此它具有很強的靈活性、開放性和兼容性,是目前研究的熱點。 本文將對軟件無線電的編譯碼部分加以敘述,提出了在VHF/UHF軟件無線電接收/發送樣機中的編譯碼方案及其具體的實現方法。該部分包括發射端的漢明(8,4,4)編碼、RS(100,81)編碼、卷積(2,1,6)編碼,以及在接收端相對應的漢明譯碼、RS譯碼、Viterbi譯碼等。 本文首先介紹軟件無線電的發展概況和VHF/UHF軟件無線電接收/發送樣機的總體方案,然后按照編譯碼部分的功能模塊逐章說明其實現的方法,最后對該部分的設計和實現加以總結。
上傳時間: 2013-04-24
上傳用戶:fling_up
如今電力電子電路的控制旨在實現高頻開關的計算機控制,并向著更高頻率、更低損耗和全數字化的方向發展。現場可編程門陣列器件(FieldProgrammableGateArrays)是近年來嶄露頭角的一類新型集成電路,它具有簡潔、經濟、高速度、低功耗等優勢,又具有全集成化、適用性強,便于開發和維護(升級)等顯著優點。與單片機和DSP相比,FPGA的頻率更高、速度更快,這些特點順應了電力電子電路的日趨高頻化和復雜化發展的需要。因此,在越來越多的領域中FPGA得到了日益廣泛的發展和應用。 本文提出了一種采用現場可編程門陣列(FPGA)器件實現數字化通用PWM控制器的方案。該控制器能產生多路PWM脈沖,具有開關頻率可調、各路脈沖間的相位可調、接口簡單、響應速度快、易修改、可現場編程等特點,可應用于PWM的全數字化控制。文中對方案的實現進行了比較詳細的論述,包括A/D采樣控制、PI算法的實現、PWM波形的產生、各模塊的工作原理等。 本文還提出一種新型ZCT-PWMBoost變換器,詳細的分析了該變換器的工作過程,并采用基于FPGA的數字化通用PWM控制器對這種軟開關Boost變換器進行控制,給出了比較完滿的實驗結果。實驗結果驗證了該控制器以及該ZCTBoost變換器的可行性和有效性,
上傳時間: 2013-06-22
上傳用戶:yph853211
工程機械監控系統是利用計算機技術、現場總線技術、無線通信技術以及衛星定位技術對工程機械的運行狀態、位置等進行監測,是一個既復雜又龐大的系統,涉及的領域廣,而且由于其工作環境的特殊性,對系統的安全性、穩定性要求特別高。現在隨著嵌入式技術的不斷成熟與發展,高可靠性、小型化、人性化、網絡化和智能化將是其發展方向。 本文采用底層單元控制系統、車載監控系統和遠程監控系統三級網絡總體結構,對起重機底層安全控制單元進行監控。在底層單元中引入CAN總線,研究基于CAN總線協議的Hilon A協議實現底層各單元的通信。中間層以S3C2410和Linux為核心,融合嵌入式技術,開發Qt.Embedded界面,對實時采集起重機的吊重、風速、仰角信號狀態參數,以及通過計算比較判斷是否發生異常的狀態進行顯示。最后研究了GPRS網絡,完成遠程數據傳輸和遠程終端監控的通訊。 文中詳細介紹了系統的各部分硬件設計,結合硬件平臺實現了Linux操作系統的移植、引導加載程序BootLoader,構建了根文件系統。結合Linux操作系統平臺,實現了CAN總線通信、GPRS通訊、PPP腳本撥號、Socket網絡編程、LCD幀緩沖顯示設備Framebuffer、觸摸屏、A/D轉換器驅動程序的開發,并通過嵌入式圖形用戶Qt/Embedded在嵌入式Linux平臺上的移植,開發了友好的人機交互界面。
上傳時間: 2013-06-30
上傳用戶:康郎
隨著電子技術的不斷發展,各種智能核儀器逐步走向自動化、智能化、數字化和便攜式的方向發展。針對傳統的多道脈沖幅度分析器體積大,人機交互不友好,不方便現場分析等的缺陷[5]。新型的高速、集成度高、界面友好的多道脈沖幅度分析器的陸續出現填補了這一缺點。 隨著電子技術的發展,以ARM為核的處理器技術的應用領域不斷擴大,相比較單片機而言,它的主頻高、運算速度快,可以滿足多道脈沖幅度分析器的苛刻的時間上的要求。而且ARM處理器功耗小,適合于功耗要求比較苛刻的地方,這些方面的特點正好滿足了便攜式多道脈沖幅度分析器野外勘察的要求。同時,由于以ARM為核的處理器具有豐富的外設資源,這樣就簡化了外設電路及芯片的使用,降低了功耗并增強了產品的信賴性。另外,ARM芯片可以方便的移植操作系統,為多道脈沖幅度分析器多任務的管理和并行的處理,甚至硬實時功能的實現提供了前提。而且在ARM平臺使用嵌入式linux操作系統使多道脈沖幅度分析器的軟件易于升級。 智能化和小型化是多道脈沖幅度分析器的發展趨勢。智能化要求系統的自動化程度高、操作簡便、容錯性好。智能化除了需要控制軟件外,還需要軟件命令的執行者即硬件控制電路來實現相應的控制邏輯,兩者的結合才能真正的實現智能化。小型化要求系統的體積小、功耗小、便于攜帶;小型化除了要求采用微功耗的器件,還要求電路板的尺寸盡量的小且所用元件盡量的少,但小型化的同時必須保持系統的智能化,即不能減少智能化所要求的復雜的邏輯和時序的控制功能。為此采用高集成度的ARM芯片實現控制電路能滿意地同時滿足智能化和小型化的要求。在研制的多道脈沖幅度分析器中,幾乎所有的控制都可以用控制芯片來實現,如閾值設定、自動穩譜以及多道數據采集,在節省了元件的數目和電路板的尺寸的同時仍能保持系統的智能化程度。 Linux內核精簡而高效,可修改性強,支持多種體系結構的處理器等,使得它是一個非常適合于嵌入式開發和應用的操作系統。嵌入式Linux可以運行的硬件平臺十分廣泛,從x86、MIPS、POWERPC到ARM,以及其他許多硬件體系結構。目前在世界范圍內,ARM體系結構的SOC逐漸占領32位嵌入式微處理器市場,ARM處理器及技術的應用幾乎已經深入到各個領域,例如:工業控制,無線通訊,網絡,消費類電子,成像等。 本課題采用三星公司生產的ARM(Advanced RISC Machines,先進精簡指令集機器)芯片S3C2410A設計并研制了一種便攜式的核數據采集系統設計方案。利用ARM芯片豐富的外設資源對傳統的多道脈沖幅度分析器進行改進和簡化。系統由前端探測器系統,以及由線性脈沖放大器、甄別電路、控制電路、采樣保持電路組成的前置電路,中央處理器模塊,顯示模塊,用戶交互模塊,存儲模塊,網絡傳輸模塊等多個模塊組成。本設計基于ARM9芯片S3C2410,并在此平臺上移植了嵌入式linux操作系統來進行任務的調度和處理等。 電路板核心板部分設計采用6層PCB板結構,這樣增加了系統可靠性,提高了電磁兼容的穩定性。數據采集系統是多道脈沖幅度分析器的核心,A/D轉換直接使用了S3C2410內置的ADC(Analog to Digital Converter,模數轉換器),在2.5 MHz的轉換時鐘下最大轉換速度500 KSPS(Kilo-Samples per second,千采樣點每秒),滿足了系統最低轉換時間≤5 μs的要求,并且控制簡單,簡化了外部接口電路。由于SD(Secure Digital Card,安全數碼卡)卡存儲容量大、攜帶方便、成本低等優點,所以設計中采用其作為外部的數據存儲設備,其驅動部分采用SD卡軟件包,為開發帶來了方便。本設計采用640*480的6.4寸LCD(Liquid Crystal Display,液晶顯示)屏作為人機交互的顯示部分,并且通過Qt/Embedded為系統提供圖形用戶界面的應用框架和窗口系統。其中包括了波形顯示部分和用戶菜單設置部分,這樣方便了用戶操作。系統的數據存取方面是基于SQLite嵌入式小型數據庫而進行的。為了方便數據向上位機的傳輸,系統設計中采用XML(Extensible Markup Language,可擴展標記語言)格式來組織傳輸的數據,通過基于TCP/IP(Transmission Control Protocol/Internet Protocol)協議的Linux下Socket套接字編程,來進行與上位機或PC(Personal Computer,個人計算機或桌面機)等的連接和數據傳輸。
上傳時間: 2013-04-24
上傳用戶:tzl1975
本論文的工作是針對高等職業技術學院嵌入式系統實驗和專業建設的實際需要而進行的。本文對ARM處理器及其寄存器結構做了認真的分析,對于文中涉及的系統硬件平臺核心即基于ARM7TDMI的S3C44BOX芯片進行了研究,分析了ARM7TDMI內核結構和使用特點,并從設計實驗的角度,研究了如何發揮器件的功能。在嵌入式操作系統的選擇上,考慮了ARM7內核的具體情況,選擇了μC/OS-II操作系統。論文對μC/OS-II的內核數據結構、運行機制以及μC/OS-II操作系統在S3C44BOX上的移植過程進行了詳細的討論。根據要求安排有A/D、D/A實驗、LCD顯示驅動、觸摸屏及鍵盤:還安排了綜合實驗,內容包括:跑馬燈、數碼管、蜂鳴器、A/D、D/A、LCD等。 第一章介紹了嵌入式系統及嵌入式處理器的基礎知識,包括目前常用的幾種嵌入式處理器、操作系統,以及如何進行嵌入式系統的選型。 第二章介紹了嵌入式實驗/開發系統使用的硬件平臺,包括處理器、存儲器、串行通信接口、以太網接口,提出了系統軟件的調試方法。平臺的硬件核心為SAMSUNG(三星)公司的S3C44BOX芯片。 第三章介紹了開發調試環境的建立,包括交叉編譯環境的建立以及相關程序庫、工具的安裝,編寫了相關程序。 第四章詳細介紹了μC/OS-II系統的移植。包括Bootloader的移植、啟動部分移植以及內存部分的移植,并給出了內核編譯的基本方法。 第五章給出了本文研究的主要結論,并對系統的發展前景進行展望。
上傳時間: 2013-06-27
上傳用戶:hakim
- vii - 8.1.1 實驗目的 315 8.1.2 實驗設備 315 8.1.3 實驗內容 315 8.1.4 實驗原理 315 8.1.5 實驗操作步驟 318 8.1.6 實驗參考程序 319 8.1.7 練習題 321- vi - 6.4 USB 接口實驗 266 6.4.1 實驗目的 266 6.4.2 實驗設備 267 6.4.3 實驗內容 267 6.4.4 實驗原理 267 6.4.5 實驗操作步驟 270 6.4.6 實驗參考程序 272 6.4.7 實驗練習題 280 6.5 SPI接口通訊實驗 281 6.5.1 實驗目的 281 6.5.2 實驗設備 281 6.5.3 實驗內容 281 6.5.4 實驗原理 281 6.5.5 實驗操作步驟 285 6.5.6 實驗參考程序 287 6.5.7 練習題 289 6.6 紅外模塊控制實驗 289 6.6.1 實驗目的 289 6.6.2 實驗設備 289 6.6.3 實驗內容 289 6.6.4 實驗原理 289 6.6.5 實驗操作步驟 291 6.6.6 實驗參考程序 291 6.6.7 練習題 296 第七章 基礎應用實驗 296 7.1 A/D 轉換實驗 296 7.1.1 實驗目的 296 7.1.2 實驗設備 296 7.1.3 實驗內容 296 7.1.4 實驗原理 296 7.1.5 實驗設計 298 7.1.6 實驗操作步驟 299 7.1.7 實驗參考程序 300 7.1.8 練習題 301 7.2 PWM步進電機控制實驗 301 7.2.1 實驗目的 301 7.2.2 實驗設備 301 7.2.3 實驗內容 301 7.2.4 實驗原理 301 7.2.5 實驗操作步驟 309 7.2.6 實驗參考程序 311 7.2.7 練習題 313 第八章 高級應用實驗 315 8.1 GPRS模塊控制實驗 315 - v - 5.2 5x4鍵盤控制實驗 219 5.2.1 實驗目的 219 5.2.2 實驗設備 219 5.2.3 實驗內容 219 5.2.4 實驗原理 219 5.2.5 實驗設計 221 5.2.6 實驗操作步驟 222 5.2.7 實驗參考程序 223 5.2.8 練習題 224 5.3 觸摸屏控制實驗 224 5.3.1 實驗目的 224 5.3.2 實驗設備 224 5.3.3 實驗內容 224 5.3.4 實驗原理 224 5.3.5 實驗設計 231 5.3.6 實驗操作步驟 231 5.3.7 實驗參考程序 232 5.3.8 練習題 233 第六章 通信與接口實驗 234 6.1 IIC 串行通信實驗 234 6.1.1 實驗目的 234 6.1.2 實驗設備 234 6.1.3 實驗內容 234 6.1.4 實驗原理 234 6.1.5 實驗設計 238 6.1.6 實驗操作步驟 241 6.1.7 實驗參考程序 243 6.1.8 練習題 245 6.2 以太網通訊實驗 246 6.2.1 實驗目的 246 6.2.2 實驗設備 246 6.2.3 實驗內容 246 6.2.4 實驗原理 246 6.2.5 實驗操作步驟 254 6.2.6 實驗參考程序 257 6.2.7 練習題 259 6.3 音頻接口 IIS 實驗 260 6.3.1 實驗目的 260 6.3.2 實驗設備 260 6.3.3 實驗內容 260 6.3.4 實驗原理 260 6.3.5 實驗步驟 263 6.3.6實驗參考程序 264 6.3.7 練習題 266 - iv - 4.4 串口通信實驗 170 4.4.1 實驗目的 170 4.4.2 實驗設備 170 4.4.3 實驗內容 170 4.4.4 實驗原理 170 4.4.5 實驗操作步驟 176 4.4.6 實驗參考程序 177 4.4.7 練習題 178 4.5 實時時鐘實驗 179 4.5.1 實驗目的 179 4.5.2 實驗設備 179 4.5.3 實驗內容 179 4.5.4 實驗原理 179 4.5.5 實驗設計 181 4.5.6 實驗操作步驟 182 4.5.7 實驗參考程序 183 4.6.8 練習題 185 4.6 數碼管顯示實驗 186 4.6.1 實驗目的 186 4.6.2 實驗設備 186 4.6.3 實驗內容 186 4.6.4 實驗原理 186 4.6.5 實驗方法與操作步驟 188 4.6.6 實驗參考程序 189 4.6.7 練習題 192 4.7 看門狗實驗 193 4.7.1 實驗目的 193 4.7.2 實驗設備 193 4.7.3 實驗內容 193 4.7.4 實驗原理 193 4.7.5 實驗設計 195 4.7.6 實驗操作步驟 196 4.7.7 實驗參考程序 197 4.7.8 實驗練習題 199 第五章 人機接口實驗 200 5.1 液晶顯示實驗 200 5.1.1 實驗目的 200 5.1.2 實驗設備 200 5.1.3 實驗內容 200 5.1.4 實驗原理 200 5.1.5 實驗設計 211 5.1.6 實驗操作步驟 213 5.1.7 實驗參考程序 214 5.1.8 練習題 219 - ii - 3.1.1 實驗目的 81 3.1.2 實驗設備 81 3.1.3 實驗內容 81 3.1.4 實驗原理 81 3.1.5 實驗操作步驟 83 3.1.6 實驗參考程序 87 3.1.7 練習題 88 3.2 ARM匯編指令實驗二 89 3.2.1 實驗目的 89 3.2.2 實驗設備 89 3.2.3 實驗內容 89 3.2.4 實驗原理 89 3.2.5 實驗操作步驟 90 3.2.6 實驗參考程序 91 3.2.7 練習題 94 3.3 Thumb 匯編指令實驗 94 3.3.1 實驗目的 94 3.3.2 實驗設備 94 3.3.3 實驗內容 94 3.3.4 實驗原理 94 3.3.5 實驗操作步驟 96 3.3.6 實驗參考程序 96 3.3.7 練習題 99 3.4 ARM處理器工作模式實驗 99 3.4.1 實驗目的 99 3.4.2實驗設備 99 3.4.3實驗內容 99 3.4.4實驗原理 99 3.4.5實驗操作步驟 101 3.4.6實驗參考程序 102 3.4.7練習題 104 3.5 C 語言程序實驗一 104 3.5.1 實驗目的 104 3.5.2 實驗設備 104 3.5.3 實驗內容 104 3.5.4 實驗原理 104 3.5.5 實驗操作步驟 106 3.5.6 實驗參考程序 106 3.5.7 練習題 109 3.6 C 語言程序實驗二 109 3.6.1 實驗目的 109 3.6.2 實驗設備 109 3.6.3 實驗內容 109 3.6.4 實驗原理 109 - iii - 3.6.5 實驗操作步驟 111 3.6.6 實驗參考程序 113 3.6.7 練習題 117 3.7 匯編與 C 語言的相互調用 117 3.7.1 實驗目的 117 3.7.2 實驗設備 117 3.7.3 實驗內容 117 3.7.4 實驗原理 117 3.7.5 實驗操作步驟 118 3.7.6 實驗參考程序 119 3.7.7 練習題 123 3.8 綜合實驗 123 3.8.1 實驗目的 123 3.8.2 實驗設備 123 3.8.3 實驗內容 123 3.8.4 實驗原理 123 3.8.5 實驗操作步驟 124 3.8.6 參考程序 127 3.8.7 練習題 134 第四章 基本接口實驗 135 4.1 存儲器實驗 135 4.1.1 實驗目的 135 4.1.2 實驗設備 135 4.1.3 實驗內容 135 4.1.4 實驗原理 135 4.1.5 實驗操作步驟 149 4.1.6 實驗參考程序 149 4.1.7 練習題 151 4.2 IO 口實驗 151 4.2.1 實驗目的 151 4.2.2 實驗設備 152 4.2.3 實驗內容 152 4.2.4 實驗原理 152 4.2.5 實驗操作步驟 159 4.2.6 實驗參考程序 160 4.2.7 實驗練習題 161 4.3 中斷實驗 161 4.3.1 實驗目的 161 4.3.2 實驗設備 161 4.3.3 實驗內容 161 4.3.4 實驗原理 162 4.3.5 實驗操作步驟 165 4.3.6 實驗參考程序 167 4.3.7 練習題 170 目 錄 I 第一章 嵌入式系統開發與應用概述 1 1.1 嵌入式系統開發與應用 1 1.2 基于 ARM的嵌入式開發環境概述 3 1.2.1 交叉開發環境 3 1.2.2 模擬開發環境 4 1.2.3 評估電路板 5 1.2.4 嵌入式操作系統 5 1.3 各種 ARM開發工具簡介 5 1.3.1 ARM的 SDT 6 1.3.2 ARM的ADS 7 1.3.3 Multi 2000 8 1.3.4 Embest IDE for ARM 11 1.3.5 OPENice32-A900仿真器 12 1.3.6 Multi-ICE 仿真器 12 1.4 如何學習基于 ARM嵌入式系統開發 13 1.5 本教程相關內容介紹 14 第二章 EMBEST ARM實驗教學系統 17 2.1 教學系統介紹 17 2.1.1 Embest IDE 集成開發環境 17 2.1.2 Embest JTAG 仿真器 19 2.1.3 Flash 編程器 20 2.1.4 Embest EduKit-III開發板 21 2.1.5 各種連接線與電源適配器 23 2.2 教學系統安裝 23 2.3 教學系統的硬件電路 27 2.3.1 概述 27 2.3.2 功能特點 27 2.3.3 原理說明 28 2.3.4 硬件結構 41 2.3.5 硬件資源分配 44 2.4 集成開發環境使用說明 51 2.4.1 Embest IDE 主框架窗口 51 2.4.2 工程管理 52 2.4.3 工程基本配置 55 2.4.4 工程的編譯鏈接 71 2.4.5 加載調試 72 2.4.6 Flash編程工具 80 第三章 嵌入式軟件開發基礎實驗 81 3.1 ARM匯編指令實驗一 81
上傳時間: 2013-04-24
上傳用戶:xaijhqx
液位是工業生產中常見的測量參數,化工、石油、污水處理等各類工廠企業都要進行液位測量。目前,液位檢測技術飛速發展,新的液位測量儀表量程大、精度高、功能全,我國新型液位儀表大多依靠進口。由于超聲波測量液位具有非接觸測量、可測低溫介質、能夠定點和連續測量等優點,近年來,超聲液位測量技術取得了長足的進步,己成功應用于江河水位、化學和制藥工業、食品加工、罐裝液位等多種領域。 本文研制的是基于ARM的超聲波液位計。傳統的超聲波液位計一般使用8位的單片機作處理器,采用電子元件捕捉到超聲波回波信號后產生中斷,判斷超聲波的傳播時間。本文提出了使用32位ARM芯片做處理器,采用數字信號處理的方法來判斷超聲波傳播時間的設計方案。 本文使用高性能的ARM7TDMI-S內核的芯片LPC2119作為系統的運算控制器,加強了系統對超聲波回波信號的處理能力;使用A/D轉換器將回波信號轉換為數字信號,采用數字濾波處理信號,利用數值處理來判斷超聲波回波信號的起始點,提高了液位的測量精度;采用單換能器收發一體式電路設計,簡化了液位的計算;利用LPC2119芯片內部的CAN總線控制器設計了CAN總線通信接口;選用一線式數字溫度傳感器DSl8820進行溫度補償,避免了由于環境溫度的變化而產生的測量誤差。ARM芯片豐富的內部資源和I/0口線有利于今后擴展功能,升級系統。本超聲波液位計使用方便,精度高,能滿足工業生產中的要求。
上傳時間: 2013-04-24
上傳用戶:lwt123
本文分析了國內外電動機保護的發展,針對當前電動機保護的現狀,介紹了一種嵌入式綜合電動機保護裝置。該保護裝置設計基于ARM嵌入式微處理器,相比于傳統的保護裝置具有體積小、功耗低、性能高、實時性好等優點,具有較強的實用價值。保護裝置可以實時采集電動機的三相輸入電壓、電流信號,對采樣數據進行保護算法計算,監視電動機的工作狀態,一旦有故障發生,則進行相應保護動作,及時切斷電動機電源。課題完成了基本的硬件系統設計和軟件開發。 硬件設計采用S3C2410作為處理器組成電動機綜合保護裝置,使用S3C2410自帶的A/D轉換器采集電動機的三相輸入電流、電壓信號,并通過鍵盤和LCD顯示器完成人機交互。 軟件的開發分為開發環境的建立和應用軟件設計兩個部分。開發環境的建立包含ARM平臺的BootLoader和嵌入式Linux的移植,交叉編譯環境的建立;應用軟件方面包含驅動程序,Qt界面程序,智能保護程序等幾個部分。 論文的最后對系統設計所完成的內容進行了總結,并提出了改進方法。
上傳時間: 2013-06-16
上傳用戶:ryb