開發(fā)環(huán)境:C語言 簡要說明:BackProp算法:BP網(wǎng)絡是反向傳播(Back Propagation)網(wǎng)絡。它是一種多層前向網(wǎng)絡,采用最小均方差學習方式。這是一種最廣泛應用的網(wǎng)絡。它可用于語言綜合,識別和自適應控制等用途。BP網(wǎng)絡需有教師訓練。
標簽: Propagation BackProp Back 網(wǎng)絡
上傳時間: 2013-12-28
上傳用戶:liuchee
誤差反向傳播網(wǎng)絡(Back propagation network,簡稱BP網(wǎng)絡)是神經(jīng)網(wǎng)絡中最活躍的方法,且絕大多數(shù)采用了三層結構(輸入層、一個隱含層和輸出層).BP網(wǎng)絡是一種非線性映射人工神經(jīng)網(wǎng)絡.本程序用vb實現(xiàn)的bp算法
標簽: propagation network Back 誤差
上傳時間: 2015-04-22
上傳用戶:qiaoyue
Back propagation neural networks and its Application: Time-Series Forecasting Prediction of the Annual Number of Sunspots
標簽: Application propagation Time-Series Forecasting
上傳時間: 2015-05-13
上傳用戶:離殤
Neuro network demo. Include SOM, Back Propagation and some simple example.
標簽: Propagation Include network example
上傳時間: 2013-12-27
上傳用戶:xuanjie
Introduction to neural networks, Back Propagation networks, Recurrent networks, Self Oganising networks, Reinforcement learning. Robot Control, Vision systems. Hardware and software Implementaionts.
標簽: networks Introduction Propagation Oganising
上傳時間: 2014-01-14
上傳用戶:xcy122677
Batch version of the BACK-propagation algorithm. % Given a set of corresponding input-output pairs and an initial network % [W1,W2,critvec,iter]=batbp(NetDef,W1,W2,PHI,Y,trparms) trains the % network with backpropagation. % % The activation functions must be either linear or tanh. The network % architecture is defined by the matrix NetDef consisting of two % rows. The first row specifies the hidden layer while the second % specifies the output layer. %
標簽: BACK-propagation corresponding input-output algorithm
上傳時間: 2016-12-27
上傳用戶:exxxds
bp神經(jīng)網(wǎng)絡算法是解決最優(yōu)化問題的先進算法之一,本論文討論了神經(jīng)網(wǎng)絡中使用最為廣泛的前饋神經(jīng)網(wǎng)絡。其網(wǎng)絡權值學習算法中影響最大的就是誤差反向傳播算法(BACK-propagation簡稱BP算法)。BP算法存在局部極小點,收斂速度慢等缺點。基于優(yōu)化理論的Levenberg-Marquardt算法忽略了二階項。該文討論當誤差不為零或者不為線性函數(shù)即二階項S(W)不能忽略時的Hesse矩陣的近似計算,進而訓練網(wǎng)絡。
標簽: 神經(jīng)網(wǎng)絡算法 算法
上傳時間: 2015-12-31
上傳用戶:wendy15
人工神經(jīng)網(wǎng)絡(Aartificial Neural Network,下簡稱ANN)是模擬生物神經(jīng)元的結構而提出的一種信息處理方法。早在1943年,已由心理學家Warren S.Mcculloch和數(shù)學家Walth H.Pitts提出神經(jīng)元數(shù)學模型,后被冷落了一段時間,80年代又迅猛興起[1]。ANN之所以受到人們的普遍關注,是由于它具有本質(zhì)的非線形特征、并行處理能力、強魯棒性以及自組織自學習的能力。其中研究得最為成熟的是誤差的反傳模型算法(BP算法,Back Propagation),它的網(wǎng)絡結構及算法直觀、簡單,在工業(yè)領域中應用較多。
標簽: Aartificial Network Neural 人工神經(jīng)網(wǎng)絡
上傳時間: 2014-01-03
上傳用戶:zhangzhenyu
This program is to one-step EEG prediction. it is done by a fuzzy neural network based on a chaotic back propagation training method.
標簽: prediction one-step program chaotic
上傳時間: 2017-07-15
上傳用戶:風之驕子
This program is prepared as an one-step EEG predictor. this is used a fuzzy neural network which is trained by a chaotic back propagation method
標簽: predictor is prepared one-step
上傳時間: 2013-12-26
上傳用戶:TRIFCT