亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

BP神經(jīng)網(wǎng)絡(luò)

  • 嚴格按照BP網絡計算公式來設計的一個matlab程序,對BP網絡進行了優化設計 優化1:設計了yyy

    嚴格按照BP網絡計算公式來設計的一個matlab程序,對BP網絡進行了優化設計 優化1:設計了yyy,即在o(k)計算公式時,當網絡進入平坦區時(<0.0001)學習率加大,出來后學習率又還原 優化2:v(i,j)=v(i,j)+deltv(i,j)+a*dv(i,j)

    標簽: matlab yyy BP網絡 計算公式

    上傳時間: 2014-11-30

    上傳用戶:妄想演繹師

  • g a w k或GNU awk是由Alfred V. A h o

    g a w k或GNU awk是由Alfred V. A h o,Peter J.We i n b e rg e r和Brian W. K e r n i g h a n于1 9 7 7年為U N I X創建的a w k編程語言的較新版本之一。a w k出自創建者姓的首字母。a w k語言(在其所有的版本中)是一種具有很強能力的模式匹配和過程語言。a w k獲取一個文件(或多個文件)來查找匹配特定模式的記錄。當查到匹配后,即執行所指定的動作。作為一個程序員,你不必操心通過文件打開、循環讀每個記錄,控制文件的結束,或執行完后關閉文件。

    標簽: V. Alfred GNU awk

    上傳時間: 2014-01-02

    上傳用戶:hwl453472107

  • 斯坦福大學機器學習英文講義

    斯坦福大學機器學習英文講義,Andrew ng 大神所寫。

    標簽: 機器學習

    上傳時間: 2015-11-23

    上傳用戶:384670111

  • 基于傳感器和模糊規則的機器人在動態障礙環境中的智能運動控制

    基于傳感器和模糊規則的機器人在動態障礙環境中的智能運動控制基于傳感器和模糊規則的機器人在動態障礙環境中的智能運動控制 oIlI~0(、r> 王 敏 金·波斯科 黃心漢 ,O、l、L (華i 面面辜寫j幕.武漢,43074) \I。L上、o 捌要:提出了一種基于傳感器和模糊規則的智能機器人運動規劃方法 .該方法運用了基于調和函數分析的人 工勢能 場原 理 .采用模糊規則 可減少推導勢能函數所 必須的計算 ,同時給機器人伺服 系統發 出指令 ,使它能夠 自動 地尋找通向目標的路徑.提出的方法具有簡單、快速的特點,而且能對 n自由度機械手的整個手臂實現最碰.建立 在非線性機器人動力學之上的整 個閉環系統和模糊控制器 的穩定性 由李雅普諾 夫原理 保證 .仿真結 果證明 了該方 法 的有效性 ,通 過比較分析顯示 出文 中所提 出的最障算法的優越性 . 美t詞:基于傳感器的機器人運動控制;模糊規則;人工勢能場;動態避障;機器人操作手 1 叫啞oducd0n R。boIsarewjdelyusedfor詛sb inchasma~ia]b柚· 血 , spot : ng, spray Ijl岫 1g, mech卸icaland elec咖 icas搴enlb1y,ma al塒 IIovaland wa時 cut· ring 咖 . ofsuch tasks_堋 llldea pri|柚ary ptd 眥 of 她 ar0botto e oncpositiontoanother withoutbur叩inginto anyobstacles. s 曲km,de. notedasthefDbotm ∞ pJan,liDgp∞ 舶1,hasbeen the倒 娜bj0ct鋤l哪gIeseat℃ll∞ . Every method o0血∞rI1ing 如b0tmotionplanninghas itsownadv∞ngesandapplicationdoma~ asweftasits di戤ldvaIIta麟 and constr~dnts. Therefore it would be ratherdifficulteithertoc0Ⅱ】paremethodsorton~ vate thechoio~ofan dl0‘iupon othP~s. 0州 d眥 :1999—07—29;Revised~ :2000一∞ 一絲 In conU~astto many n~ hods,rob

    標簽: 傳感器 機器人

    上傳時間: 2022-02-15

    上傳用戶:

  • W火電機組 儀控分冊

    W火電機組 儀控分冊

    標簽: 火電機組

    上傳時間: 2013-04-15

    上傳用戶:eeworm

  • 局域網最常見十大錯誤及解決(一)

    局域網最常見十大錯誤及解決(一)

    標簽: 局域

    上傳時間: 2013-04-15

    上傳用戶:eeworm

  • 基于BP神經網絡的永磁同步電機自適應控制研究.rar

    本文擬借助于神經網絡良好的逼近能力,實現永磁同步電機的無位置傳感器控制。 人工神經網絡(Neural Network)可以逼近任意復雜非線性映射,具有很強的自學習自適應能力,十分適合于解決復雜的非線性控制問題。其中,BP神經網絡是目前廣泛應用的神經網絡之一,得到了較為深入的研究,其結構簡單,需要離線確定的參數少、泛化能力強、逼近精度高、實時性強,采用BP神經網絡實現永磁同步電機的調速控制具有重要意義。 文中提出了基于BP神經網絡的永磁同步電機自適應調速控制策略,建立了一種包含辨識網絡和控制網絡的雙神經網絡結構控制系統。辨識網絡在線動態辨識系統輸出并對控制網絡參數進行調整,控制網絡與PI控制方法相結合實現永磁同步電機自適應轉速控制。仿真結果表明,該系統動態響應快、實時性較強、精度較高。 文中提出了一種基于混合訓練算法的BP神經網絡永磁同步電機無位置傳感器控制方法。采用混沌優化和梯度下降法相結合的混合算法對BP神經網絡進行離線訓練后,將其用于永磁同步電機的轉子位置角在線估計。結果表明,該訓練算法可以有效地加快神經網絡收斂速度,且估計的轉子位置角誤差較小、精度較高。 文中建立了以TMS320F2812芯片為核心的永磁同步電機調速控制系統,并進行了相應的軟硬件設計,為實現永磁同步電機的各種控制策略奠定了實驗基礎。DSP控制系統為神經網絡訓練提供樣本,為研究永磁同步電機的自適應調速控制和轉子位置角估計創造了條件。

    標簽: BP神經網絡 永磁同步電機 自適應控制

    上傳時間: 2013-05-23

    上傳用戶:1101055045

  • 空間電壓脈寬調制SVPWM的原理及DSP的實現.rar

    針對空間電壓欠量脈寬調制過程中存在的問題,采用理論推演與軟件設計方法,在介紹了s V P w M 的基本原理的基礎上,利用T I 公司的 D S P電機控制芯片 T M S 3 2 0 L F 2 4 0 7設計了S V P W M的實現方法,并給出 j - 變頻調速系統的全數字化實現。 通過對永磁同步電機進行控制仿真實驗,得到的結果表明此方法是切實可行V , J ,控制系統具有優良的動靜態性能,較高的控制效果,有廣泛的應用前景。

    標簽: SVPWM DSP 電壓

    上傳時間: 2013-04-24

    上傳用戶:yxvideo

  • 基于BP神經網絡的無刷直流電機PID控制方法的研究.rar

    無刷直流電機(BLDCM)是隨著電機控制技術、電力電子技術和微電子技術的發展而出現的一種新型電機。它是在有刷直流電機的基礎上發展起來的。無刷直流電機具有交流電機的結構簡單、運行可靠、維護方便等一系列特點,又具有直流電機的運行效率高、無勵磁損耗以及調速性能好等諸多優點,在很多場合有廣泛的應用前景,成為了國內外研究的熱點。無刷直流電機傳統的理論部分分析和設計方法已經比較成熟,因此對無刷直流電機控制策略的研究就顯得十分重要。 PID控制以其結構簡單、可靠性高、易于工程實現等優點至今仍被廣泛應用。在系統模型參數變化不大的情況下,PID控制性能優良。但在工業上有許多無法建立精確數學模型的復雜控制對象和非線性控制對象,若采用傳統的PID進行控制的話,那么很難獲得比較理想的控制效果。 對于無刷直流電機而言,它是一個多變量、強耦合的非線性系統,固定參數的PID調節器無法得到很理想的控制性能指標。基于以上原因,本文以無刷直流電機為控制對象,通過分析無刷直流電機的數學模型,以BP神經網絡為基礎,設計了應用于無刷直流電機的神經網絡PID控制器。 在MATLAB平臺上,先利用神經網絡PID控制器,給出相應的控制算法,對典型的參數時變非線性系統的控制進行了仿真研究。仿真結果表明,同傳統PID控制器相比,神經網絡PID控制器對模型、環境具有較好的適應能力與較強的魯棒性,有效的改善了系統的控制結果,達到了預期的目的。隨后利用SIMULNK建立了無刷直流電機控制系統的仿真模型。分別采用普通PID控制器和神經網絡PID控制器對電機的不同運行狀況進行了仿真分析。仿真結果驗證了所建模型的正確性,并證明了神經網絡控制的優越性。

    標簽: PID BP神經網絡 無刷直流電機

    上傳時間: 2013-08-04

    上傳用戶:YYRR

  • 基于BP神經網絡的永磁同步電機自適應控制研究.rar

    永磁同步電機(Permanent Magnet Synchronous Motor)因功率密度大、效率高、過載能力強、控制性能優良等優點,在中小容量調速系統和高精度調速場合發展迅速。但由于永磁同步電機的磁場具有獨特的交叉耦合和交叉飽和現象,且其控制系統是一個強非線性、時變和多變量系統,要實現高精度調速就需對其控制策略進行深入研究。 永磁同步電機調速系統中,位置傳感器的存在使得系統成本增加、結構復雜、可靠性降低,所以永磁同步電機的無位置傳感器控制成為一個新的研究熱點。本文擬借助于神經網絡良好的逼近能力,實現永磁同步電機的無位置傳感器控制。 人工神經網絡(Neural Network)可以逼近任意復雜非線性映射,具有很強的自學習自適應能力,十分適合于解決復雜的非線性控制問題。其中,BP神經網絡是目前廣泛應用的神經網絡之一,得到了較為深入的研究,其結構簡單,需要離線確定的參數少、泛化能力強、逼近精度高、實時性強,采用BP神經網絡實現永磁同步電機的調速控制具有重要意義。 文中提出了基于BP神經網絡的永磁同步電機自適應調速控制策略,建立了一種包含辨識網絡和控制網絡的雙神經網絡結構控制系統。辨識網絡在線動態辨識系統輸出并對控制網絡參數進行調整,控制網絡與PI控制方法相結合實現永磁同步電機自適應轉速控制。仿真結果表明,該系統動態響應快、實時性較強、精度較高。 文中提出了一種基于混合訓練算法的BP神經網絡永磁同步電機無位置傳感器控制方法。采用混沌優化和梯度下降法相結合的混合算法對BP神經網絡進行離線訓練后,將其用于永磁同步電機的轉子位置角在線估計。結果表明,該訓練算法可以有效地加快神經網絡收斂速度,且估計的轉子位置角誤差較小、精度較高。 文中建立了以TMS320F2812芯片為核心的永磁同步電機調速控制系統,并進行了相應的軟硬件設計,為實現永磁同步電機的各種控制策略奠定了實驗基礎。DSP控制系統為神經網絡訓練提供樣本,為研究永磁同步電機的自適應調速控制和轉子位置角估計創造了條件。

    標簽: BP神經網絡 永磁同步電機 自適應控制

    上傳時間: 2013-07-03

    上傳用戶:kakuki123

主站蜘蛛池模板: 綦江县| 彝良县| 西吉县| 广西| 阳山县| 亳州市| 承德市| 德兴市| 凌云县| 彩票| 贵阳市| 安化县| 田林县| 田东县| 武夷山市| 城口县| 青阳县| 鄢陵县| 阿拉善盟| 含山县| 开化县| 东宁县| 长治市| 沙坪坝区| 西平县| 赤水市| 康定县| 瑞金市| 上思县| 东宁县| 海盐县| 垣曲县| 沈阳市| 儋州市| 迁西县| 云梦县| 常熟市| 磐石市| 乐清市| 尼木县| 达州市|