This thesis is devoted to several efficient VLSI architecture design issues in errorcorrecting
coding, including finite field arithmetic, (Generalized) Low-Density Parity-
Check (LDPC) codes, and Reed-Solomon codes.
PSO’s precursor was a simulator of social behavior, that was used to visualize
the movement of a birds’ flock. Several versions of the simulation model
were developed, incorporating concepts such as nearest-neighbor velocity
matching and acceleration by distance
Fortran
- Tóm tắ t nộ i dung mô n họ c
Các khái niệ m và yế u tố trong ngô n ngữ lậ p trình FORTRAN. Các câ u lệ nh củ a ngô n ngữ FORTRAN. Cơ bả n về chư ơ ng chư ơ ng dị ch và mô i trư ờ ng lậ p trình DIGITAL Visual Fortran. Viế t và chạ y các chư ơ ng trình cho các bài toán đ ơ n giả n bằ ng ngô n ngữ FORTRAN.
Behavioral models are used in games and computer graphics for
realistic simulation of massive crowds. In this paper, we present a
GPU based implementation of Reynolds [1987] algorithm for simulating
flocks of birds and propose an extension to consider environment
self occlusion. We performed several experiments and
the results showed that the proposed approach runs up to three
times faster than the original algorithm when simulating high density
crowds, without compromising significantly the original crowd
behavior.
These codes require an ASCII input file called input.dat of the following form:
Lower Limit on x Upper Limit on x Final Time
Pressure for x<0 when t=0 Density for x<0 when t=0 Speed for x<0 when t=0
Pressure for x>0 when t=0 Density for x>0 when t=0 Speed for x>0 when t=0
These codes produce 8 ASCII output files:
density.out. Density vs. x
entropy.out. Entropy vs. x
mach.out. Mach number vs. x
massflux.out. Mass flux vs. x
pressure.out. Pressure vs. x
sound.out. Speed-of-sound vs. x
velocity.out. Velocity vs. x
waves.out. A description of the solution in terms of the three waves defined in the book (+,-,0).
The CommScope InstaPATCH? 360 and ReadyPATCH? solutions utilize a
standards-compliant multi-fiber connector to provide high density termination
capability. The connector is called an MPO (Multi-fiber Push On) connector by
the standards. In many cases, multi-fiber connector products are referred to as
MTP connectors. This document is intended to clarify the difference between the two terms – MPO and MTP.
Lithium–sulfur batteries are a promising energy-storage technology due to their relatively low cost and high theoretical energy density. However, one of their major technical problems is the shuttling of soluble polysulfides between electrodes, resulting in rapid capacity fading. Here, we present a metal–organic framework (MOF)-based battery separator to mitigate the shuttling problem. We show that the MOF-based separator acts as an ionic sieve in lithium–sulfur batteries, which selectively sieves Li+ ions while e ciently suppressing undesired polysulfides migrating to the anode side. When a sulfur-containing mesoporous carbon material (approximately 70 wt% sulfur content) is used as a cathode composite without elaborate synthesis or surface modification, a lithium–sulfur battery with a MOF-based separator exhibits a low capacity decay rate (0.019% per cycle over 1,500 cycles). Moreover, there is almost no capacity fading after the initial 100 cycles. Our approach demonstrates the potential for MOF-based materials as separators for energy-storage applications.
Lithium–sulfur (Li–S) batteries with high energy density and long cycle life are considered to be one of the most promising next-generation energy-storage systems beyond routine lithium-ion batteries. Various approaches have been proposed to break down technical barriers in Li–S battery systems. The use
of nanostructured metal oxides and sulfides for high sulfur utilization and long life span of Li–S batteries is reviewed here. The relationships between the intrinsic properties of metal oxide/sulfide hosts and electrochemical performances of Li–S batteries are discussed. Nanostructured metal oxides/ sulfides hosts used in solid sulfur cathodes, separators/interlayers, lithium- metal-anode protection, and lithium polysulfides batteries are discussed respectively. Prospects for the future developments of Li–S batteries with nanostructured metal oxides/sulfides are also discussed.