The PCA9540B is a 1-of-2 bidirectional translating multiplexer, controlled via the I2C-bus.The SCL/SDA upstream pair fans out to two SCx/SDx downstream pairs, or channels.Only one SCx/SDx channel is selected at a time, determined by the CONTENTS of theprogrammable control register.
The PCA9544A provides 4 interrupt inputs, one for each channeland one open drain interrupt output. When an interrupt is generated byany device, it will be detected by the PCA9544A and the interruptoutput will be driven LOW. The channel need not be active fordetection of the interrupt. A bit is also set in the control byte.Bits 4 – 7 of the control byte correspond to channels 0 – 3 of thePCA9544A, respectively. Therefore, if an interrupt is generated byany device connected to channel 2, the state of the interrupt inputs isloaded into the control register when a read is accomplished.Likewise, an interrupt on any device connected to channel 0 wouldcause bit 4 of the control register to be set on the read. The mastercan then address the PCA9544A and read the CONTENTS of thecontrol byte to determine which channel contains the devicegenerating the interrupt. The master can then reconfigure thePCA9544A to select this channel, and locate the device generatingthe interrupt and clear it. The interrupt clears when the deviceoriginating the interrupt clears.
The PCA9542A is a 1-of-2 bidirectional translating multiplexer, controlled via the I2C-bus.The SCL/SDA upstream pair fans out to two SCx/SDx downstream pairs, or channels.Only one SCx/SDx channel is selected at a time, determined by the CONTENTS of theprogrammable control register. Two interrupt inputs, INT0 and INT1, one for each of theSCx/SDx downstream pairs, are provided. One interrupt output, INT, which acts as anAND of the two interrupt inputs, is provided.
The PCA9549 provides eight bits of high speed TTL-compatible bus switching controlledby the I2C-bus. The low ON-state resistance of the switch allows connections to be madewith minimal propagation delay. Any individual A to B channel or combination of channelscan be selected via the I2C-bus, determined by the CONTENTS of the programmable Controlregister. When the I2C-bus bit is HIGH (logic 1), the switch is on and data can flow fromPort A to Port B, or vice versa. When the I2C-bus bit is LOW (logic 0), the switch is open,creating a high-impedance state between the two ports, which stops the data flow.An active LOW reset input (RESET) allows the PCA9549 to recover from a situationwhere the I2C-bus is stuck in a LOW state. Pulling the RESET pin LOW resets the I2C-busstate machine and causes all the bits to be open, as does the internal power-on resetfunction.
The PCA9546A is a quad bidirectional translating switch controlled via the I2C-bus. TheSCL/SDA upstream pair fans out to four downstream pairs, or channels. Any individualSCx/SDx channel or combination of channels can be selected, determined by theCONTENTS of the programmable control register.
The PCA9547 is an octal bidirectional translating multiplexer controlled by the I2C-bus.The SCL/SDA upstream pair fans out to eight downstream pairs, or channels. Only oneSCx/SDx channel can be selected at a time, determined by the CONTENTS of theprogrammable control register. The device powers up with Channel 0 connected, allowingimmediate communication between the master and downstream devices on that channel.
The PCA9548A is an octal bidirectional translating switch controlled via the I2C-bus. TheSCL/SDA upstream pair fans out to eight downstream pairs, or channels. Any individualSCx/SDx channel or combination of channels can be selected, determined by theCONTENTS of the programmable control register.An active LOW reset input allows the PCA9548A to recover from a situation where one ofthe downstream I2C-buses is stuck in a LOW state. Pulling the RESET pin LOW resets theI2C-bus state machine and causes all the channels to be deselected as does the internalPower-on reset function.
6小時學會labview,
labview Six Hour Course – Instructor Notes
This zip file contains material designed to give students a working knowledge of labview in a 6 hour timeframe. The CONTENTS are:
Instructor Notes.doc – this document.
labviewIntroduction-SixHour.ppt – a PowerPoint presentation containing screenshots and notes on the topics covered by the course.
Convert C to F (Ex1).vi – Exercise 1 solution VI.
Convert C to F (Ex2).vi – Exercise 2 solution subVI.
Thermometer-DAQ (Ex2).vi – Exercise 2 solution VI.
Temperature Monitor (Ex3).vi – Exercise 3 solution VI.
Thermometer (Ex4).vi – Exercise 4 solution subVI.
Convert C to F (Ex4).vi – Exercise 4 solution subVI.
Temperature Logger (Ex4).vi – Exercise 4 solution VI.
Multiplot Graph (Ex5).vi – Exercise 5 solution VI.
Square Root (Ex6).vi – Exercise 6 solution VI.
State Machine 1 (Ex7).vi – Exercise 7 solution VI.
The slides can be presented in two three hour labs, or six one hour lectures. Depending on the time and resources available in class, you can choose whether to assign the exercises as homework or to be done in class. If you decide to assign the exercises in class, it is best to assign them in order with the presentation. This way the students can create VI’s while the relevant information is still fresh. The notes associated with the exercise slide should be sufficient to guide the students to a solution. The solution files included are one possible solution, but by no means the only solution.