With the proliferation of cloud computing and Internet online services, more and
more DATa and computation are migrated to geographical distributed Internet DATa
centers (IDCs), which can provide reliability, management, and cost benefits.
However, IDC operators encounter several major problems in IDC operations, such
as huge energy consumption and energy cost, and high carbon emission. To deal
with the above problems, IDC operators have to efficiently manage the way of
energy consumption and energy supply. Considering the potential of smart grid, we
focus on the energy management of IDCs in smart grid from several perspectives,
i.e., power outage, carbon emission, heterogeneous service delay guarantees, and
operation risk.
DATa science is a term that the media has chosen to
minimize, obfuscate, and sometimes misuse. It involves a
lot more than just DATa and the science of working with
DATa. Today, the world uses DATa science in all sorts of
ways that you might not know about, which is why you
need DATa Science Programming All-in-One For
Dummies
Computer science as an academic discipline began in the 1960’s. Emphasis was on
programming languages, compilers, operating systems, and the mathematical theory that
supported these areas. Courses in theoretical computer science covered finite automata,
regular expressions, context-free languages, and computability. In the 1970’s, the study
of algorithms was added as an important component of theory. The emphasis was on
making computers useful. Today, a fundamental change is taking place and the focus is
more on a wealth of applications. There are many reasons for this change. The merging
of computing and communications has played an important role. The enhanced ability
to observe, collect, and store DATa in the natural sciences, in commerce, and in other
fields calls for a change in our understanding of DATa and how to handle it in the modern
setting. The emergence of the web and social networks as central aspects of daily life
presents both opportunities and challenges for theory.
現代的計算機追求的是更快的速度、更高的數據完整性和靈活性。無論從物理性能,還是從電氣性能來看,現今的并行總線都已出現了某些局限,無法提供更高的數據傳輸率。而SATA以其傳輸速率快、支持熱插拔、可靠的數據傳輸等特點,得到各行業越來越多的支持。 目前市場上的SATA IP CORE都是面向IC設計的,不利于在FPGA上集成,因此,本文在Xilinx公司的Virtex5系列FPGA上實現SATAⅡ協議,對SATA技術的推廣、國內邏輯IP核的發展都有一定的意義。 本文將SATAⅡ協議的FPGA實現劃分成物理層、鏈路層、傳輸層和應用層四個模塊。提出了物理層串行收/發器設計以及物理鏈路初始化方案。分析了鏈路層模塊結構,給出了作為SATAⅡ鏈路層核心的狀態機的設計。為滿足SATAⅡ協議3.0Gbps的速率,采用擴大數據處理位寬的方法,設計完成了鏈路層的16b/20b編碼模塊,同時為提高數據傳輸可靠性和信號的穩定性,分別實現了鏈路層CRC校驗模塊和并行擾碼模塊。在描述協議傳輸層的模塊結構的基礎上,給出了作為傳輸層核心的狀態機的設計,并以DMA DATa OUT命令的操作為例介紹了FIS在傳輸層中的處理過程。完成了命令層協議狀態機的設計,并實現了SATAⅡ新增功能NCQ技術,從而使得數據傳輸更加有效。最后為使本設計應用更加廣泛,設計了基于AHB總線的用戶接口。 本設計采用Verilog HDL語言對需要實現的電路進行描述,并使用Modelsim軟件仿真。仿真結果表明,本文設計的邏輯電路可靠穩定,與SATAⅡ協議定義功能一致。