第1 章 體系結構 ARM經典300問與答第1 問:Q:請問在初始化CPU 堆棧的時候一開始在執行mov r0, LR 這句指令時處理器是什么模式A:復位后的模式,即管理模式.第2 問:Q:請教:MOV 中的8 位圖立即數,是怎么一回事 0xF0000001 是怎么來的A:是循環右移,就是一個0—255 之間的數左移或右移偶數位的來的,也就是這個數除以4一直除, 直到在0-255 的范圍內它是整數就說明是可以的!A:8 位數(0-255)循環左移或循環右移偶數位得到的,F0000001 既是0x1F 循環右移4 位,符合規范,所以是正確的.這樣做是因為指令長度的限制,不可能把32 位立即數放在32 位的指令中.移位偶數也是這個原因.可以看一看ARM 體系結構(ADS 自帶的英文文檔)的相關部分.第3 問:Q:請教:《ARM 微控制器基礎與實戰》2.2.1 節關于第2 個操作數的描述中有這么一段:#inmed_8r 常數表達式.該常數必須對應8 位位圖,即常熟是由一個8 位的常數循環移位偶數位得到.合法常量:0x3FC,0,0xF0000000,200,0xF0000001.非法常量:0x1FE,511,0xFFFF,0x1010,0xF0000010.常數表達式應用舉例:......LDR R0,[R1],#-4 ;讀取 R1 地址上的存儲器單元內容,且 R1 = R1-4針對這一段,我的疑問:1. 即常數是由一個8 位的常數循環移位偶數位得到,這句話如何理解2. 該常數必須對應8 位位圖,既然是8 位位圖,那么取值為0-255,怎么0x3FC 這種超出255 的數是合法常量呢3. 所舉例子中,合法常量和非法常量是怎么區分的 如0x3FC 合法,而0x1FE 卻非法0xF0000000,0xF0000001 都合法,而0xF0000010 又變成了非法4. 對于匯編語句 LDR R0,[R1],#-4,是先將R1 的值減4 結果存入R1,然后讀取R1 所指單元的 值到R0,還是先讀取R1 到R0,然后再將R1 減4 結果存入R1A:提示,任何常數都可用底數*2 的n 次冪 來表示.1. ARM 結構中,只有8bits 用來表示底數,因此底數必須是8 位位圖.2. 8 位位圖循環之后得到常數,并非只能是8 位.3. 0xF0000010 底數是9 位,不能表示.4. LDR R0, [R1], #-4 是后索引,即先讀,再減.可以看一看ARM 體系結構對相關尋址方式的說明.
上傳時間: 2013-11-22
上傳用戶:1109003457
LTE基站誤碼率測試是基站射頻測試中最為關鍵的測試項目之一,提出一種快速、高效的測試方法和測試架構。該方案采用基站射頻板作為數據采集卡、完成上行鏈路的解調和模擬信號轉換成I/Q數據功能,利用ADS、MATLAB搭建上行信道的同步、解碼功能。測試表明該方案的測試精度達到 0.2dB,完全滿足研發和生產中測試上行相關射頻指標的功能需求, 同時本設計還具有開發周期短、投資成本低,操作簡便、很強的跨系統移植能力。
上傳時間: 2013-11-17
上傳用戶:xhwst
介紹了光雙二進制歸零碼DRZ和改進的雙二進制歸零碼MD-RZ 的產生原理和特點,通過光通信仿真軟件產生了這兩種信號,并給出了光譜圖。重點設計了一個40Gb/ s 的單信道光纖傳輸系統,對兩種碼型進行了模擬,通過對Q值的結果來分析其非線性容限和傳輸距離,并與CSRZ 碼的傳輸性能進行對比。
上傳時間: 2013-11-04
上傳用戶:亞亞娟娟123
因為圖題所示為周期性數字波,所以兩個相鄰的上升沿之間持續的時間為周期,T=10ms頻率為周期的倒數,f=1/T=1/0.01s=100HZ,占空比為高電平脈沖寬度與周期的百分比,q=1ms/10ms*100%=10%.
上傳時間: 2013-10-31
上傳用戶:angle
本書羅列了一些電子元件非常有用的知識,有些還是工作中經常會碰到的。
標簽: 電子元器件
上傳時間: 2013-10-31
上傳用戶:maricle
創新、效能、卓越是ADI公司的文化支柱。作為業界公認的全球領先數據轉換和信號調理技術領先者,我們除了提供成千上萬種產品以外,還開發了全面的設計工具,以便客戶在整個設計階段都能輕松快捷地評估電路。
上傳時間: 2013-11-25
上傳用戶:kachleen
創新、效能、卓越是ADI公司的文化支柱。作為業界公認的全球領先數據轉換和信號調理技術領先者,我們除了提供成千上萬種產品以外,還開發了全面的設計工具,以便客戶在整個設計階段都能輕松快捷地評估電路。
上傳時間: 2013-10-18
上傳用戶:cxl274287265
頻譜分析儀的主要工作原理 接收到的中頻模擬信號經過A/D轉換為14位的數字信 號,首先對數字信號進行數字下變頻(DDC),得到I路、Q路信號,然后根據控制信號對I路、Q路信號進行抽取濾波,使用CIC抽取濾波器完成,然后在分 別對I路、Q路信號分別進行低通濾波,濾波器采用FIR濾波器和半帶濾波器相結合的方式,然后對信號進行加窗、FFT(對頻譜進行分析時進行FFT運算, 對功率譜進行分析時不進行FFT運算)、I路和Q路平方求和、求平均。最后將輸出的數據送入到DSP中進行顯示與控制的后續處理。
上傳時間: 2013-11-14
上傳用戶:leixinzhuo
磁芯電感器的諧波失真分析 摘 要:簡述了改進鐵氧體軟磁材料比損耗系數和磁滯常數ηB,從而降低總諧波失真THD的歷史過程,分析了諸多因數對諧波測量的影響,提出了磁心性能的調控方向。 關鍵詞:比損耗系數, 磁滯常數ηB ,直流偏置特性DC-Bias,總諧波失真THD Analysis on THD of the fer rite co res u se d i n i nductancShi Yan Nanjing Finemag Technology Co. Ltd., Nanjing 210033 Abstract: Histrory of decreasing THD by improving the ratio loss coefficient and hysteresis constant of soft magnetic ferrite is briefly narrated. The effect of many factors which affect the harmonic wave testing is analysed. The way of improving the performance of ferrite cores is put forward. Key words: ratio loss coefficient,hysteresis constant,DC-Bias,THD 近年來,變壓器生產廠家和軟磁鐵氧體生產廠家,在電感器和變壓器產品的總諧波失真指標控制上,進行了深入的探討和廣泛的合作,逐步弄清了一些似是而非的問題。從工藝技術上采取了不少有效措施,促進了質量問題的迅速解決。本文將就此熱門話題作一些粗淺探討。 一、 歷史回顧 總諧波失真(Total harmonic distortion) ,簡稱THD,并不是什么新的概念,早在幾十年前的載波通信技術中就已有嚴格要求<1>。1978年郵電部公布的標準YD/Z17-78“載波用鐵氧體罐形磁心”中,規定了高μQ材料制作的無中心柱配對罐形磁心詳細的測試電路和方法。如圖一電路所示,利用LC組成的150KHz低通濾波器在高電平輸入的情況下測量磁心產生的非線性失真。這種相對比較的實用方法,專用于無中心柱配對罐形磁心的諧波衰耗測試。 這種磁心主要用于載波電報、電話設備的遙測振蕩器和線路放大器系統,其非線性失真有很嚴格的要求。 圖中 ZD —— QF867 型阻容式載頻振蕩器,輸出阻抗 150Ω, Ld47 —— 47KHz 低通濾波器,阻抗 150Ω,阻帶衰耗大于61dB, Lg88 ——并聯高低通濾波器,阻抗 150Ω,三次諧波衰耗大于61dB Ld88 ——并聯高低通濾波器,阻抗 150Ω,三次諧波衰耗大于61dB FD —— 30~50KHz 放大器, 阻抗 150Ω, 增益不小于 43 dB,三次諧波衰耗b3(0)≥91 dB, DP —— Qp373 選頻電平表,輸入高阻抗, L ——被測無心罐形磁心及線圈, C ——聚苯乙烯薄膜電容器CMO-100V-707APF±0.5%,二只。 測量時,所配用線圈應用絲包銅電磁線SQJ9×0.12(JB661-75)在直徑為16.1mm的線架上繞制 120 匝, (線架為一格) , 其空心電感值為 318μH(誤差1%) 被測磁心配對安裝好后,先調節振蕩器頻率為 36.6~40KHz, 使輸出電平值為+17.4 dB, 即選頻表在 22′端子測得的主波電平 (P2)為+17.4 dB,然后在33′端子處測得輸出的三次諧波電平(P3), 則三次諧波衰耗值為:b3(+2)= P2+S+ P3 式中:S 為放大器增益dB 從以往的資料引證, 就可以發現諧波失真的測量是一項很精細的工作,其中測量系統的高、低通濾波器,信號源和放大器本身的三次諧波衰耗控制很嚴,阻抗必須匹配,薄膜電容器的非線性也有相應要求。濾波器的電感全由不帶任何磁介質的大空心線圈繞成,以保證本身的“潔凈” ,不至于造成對磁心分選的誤判。 為了滿足多路通信整機的小型化和穩定性要求, 必須生產低損耗高穩定磁心。上世紀 70 年代初,1409 所和四機部、郵電部各廠,從工藝上改變了推板空氣窯燒結,出窯后經真空罐冷卻的落后方式,改用真空爐,并控制燒結、冷卻氣氛。技術上采用共沉淀法攻關試制出了μQ乘積 60 萬和 100 萬的低損耗高穩定材料,在此基礎上,還實現了高μ7000~10000材料的突破,從而大大縮短了與國外企業的技術差異。當時正處于通信技術由FDM(頻率劃分調制)向PCM(脈沖編碼調制) 轉換時期, 日本人明石雅夫發表了μQ乘積125 萬為 0.8×10 ,100KHz)的超優鐵氧體材料<3>,其磁滯系數降為優鐵
上傳時間: 2013-12-15
上傳用戶:天空說我在
GDWI型繞線片式電感器 一 特征 繞線貼片結構,高Q值 大電流,低直流電阻,自諧頻率較高 二 用途 適用于電子設備信息處理系統
上傳時間: 2013-11-07
上傳用戶:lihairui42