TION
ESD (electrostatic Discharge) sensitive device. Electrostatic charges as high as 4000 V readily
accumulate on the human body and test equipment and can Discharge without detection.
WARNING!
Although the AD7008 features proprietary ESD protection circuitry, permanent damage may
occur on devices subjected to high energy electrostatic Discharges. Therefore, proper ESD
precautions are recommended to avoid performance degradation or loss of functionality.
Electrostatic Discharge (ESD) is one of the most prevalent threats to the reliability
of electronic components. It is an event in which a finite amount of charge is trans-
ferred from one object (i.e., human body) to another (i.e., microchip). This process
can result in a very high current passing through the microchip within a very short
period of time, and, hence, more than 35% of chip damages can be attributed to an
ESD-related event. As such, designing on-chip ESD structures to protect integrated
circuits against the ESD stresses is a high priority in the semiconductor industry.
Construction Strategy of ESD Protection CircuitAbstract: The principles used to construct ESD protection on circuits and the basic conceptions of ESD protection design are presented.Key words:ESD protection/On circuit, ESD design window, ESD current path1 引言靜電放電(ESD,Electrostatic Discharge)給電子器件環(huán)境會(huì)帶來破壞性的后果。它是造成集成電路失效的主要原因之一。隨著集成電路工藝不斷發(fā)展,互補(bǔ)金屬氧化物半導(dǎo)體(CMOS,Complementary Metal-Oxide Semiconductor)的特征尺寸不斷縮小,金屬氧化物半導(dǎo)體(MOS, Metal-Oxide Semiconductor)的柵氧厚度越來越薄,MOS 管能承受的電流和電壓也越來越小,因此要進(jìn)一步優(yōu)化電路的抗ESD 性能,需要從全芯片ESD 保護(hù)結(jié)構(gòu)的設(shè)計(jì)來進(jìn)行考慮。
Although recent popular attention is focused on LithiumIon batteries, one must not forget that other batterychemistries, such as Nickel Cadmium (NiCd) and NickelMetal Hydride (NiMH) have advantages in rechargeablepower systems. Nickel-based batteries are robust, capableof high Discharge rates, have good cycle life, do notrequire special protection circuitry and are less expensivethan Li-Ion. Among the two, NiMH batteries are rapidlyreplacing NiCd because of their higher capacity (40% to50% more) and the environmental concerns of the toxiccadmium contained in NiCd batteries.
The MAX3243E device consists of three line drivers, five line receivers, and a dual charge-pump circuit with±15-kV ESD (HBM and IEC61000-4-2, Air-Gap Discharge) and ±8-kV ESD (IEC61000-4-2, Contact Discharge)protection on serial-port connection pins. The device meets the requirements of TIA/EIA-232-F and provides theelectrical interface between an asynchronous communication controller and the serial-port connector. Thiscombination of drivers and receivers matches that needed for the typical serial port used in an IBM PC/AT, orcompatible. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-Vsupply. In addition, the device includes an always-active noninverting output (ROUT2B), which allowsapplications using the ring indicator to transmit data while the device is powered down. The device operates atdata signaling rates up to 250 kbit/s and a maximum of 30-V/ms driver output slew rate.
Abstract: Most hand-held products lack accurate battery-charge monitors ("fuel gauges") because of the misconception that an accurate fuel gauge is difficult to achieve. This article debunks the myths and discusses how to accurately monitor charge at all temperatures, charge and Discharge rates, and aging conditions.
無線通信和數(shù)據(jù)在新一代手機(jī)和PDA中的融合為再一次的生產(chǎn)力飛躍創(chuàng)造了條件。。隨之而來的將是經(jīng)濟(jì)的增長和全新的工作方式,在便攜式計(jì)算機(jī)領(lǐng)域,PC筆記本曾經(jīng)扮演了類似的開拓者角角。
Abstract: Most hand-held products lack accurate battery-charge monitors ("fuel gauges") because of the misconception that an accurate fuel gauge is difficult to achieve. This article debunks the myths and discusses how to accurately monitor charge at all temperatures, charge and Discharge rates, and aging conditions.
本軟件是關(guān)于MAX338, MAX339的英文數(shù)據(jù)手冊(cè):MAX338, MAX339 8通道/雙4通道、低泄漏、CMOS模擬多路復(fù)用器
The MAX338/MAX339 are monolithic, CMOS analog multiplexers (muxes). The 8-channel MAX338 is designed to connect one of eight inputs to a common output by control of a 3-bit binary address. The dual, 4-channel MAX339 is designed to connect one of four inputs to a common output by control of a 2-bit binary address. Both devices can be used as either a mux or a demux. On-resistance is 400Ω max, and the devices conduct current equally well in both directions.
These muxes feature extremely low off leakages (less than 20pA at +25°C), and extremely low on-channel leakages (less than 50pA at +25°C). The new design offers guaranteed low charge injection (1.5pC typ) and electrostatic Discharge (ESD) protection greater than 2000V, per method 3015.7. These improved muxes are pin-compatible upgrades for the industry-standard DG508A and DG509A. For similar Maxim devices with lower leakage and charge injection but higher on-resistance, see the MAX328 and MAX329.