Features a unique program to estimate the power spectral density. The spectrum containing all significant details is calculated from a time series model. Model type as well as model order are determined automatically from the data, using statistical criteria. Robust estimation algorithms and order selection criteria are used to obtain reliable results. Unlike in FFT analysis, where the experimenter has to set the amount of smoothing of the raw FFT, the right level of detail is assessed using the data only.
FEATURES
Unique 1-Wire interface requires only one port pin for communication
Multidrop capability simplifies distributed temperature sensing applications
Requires no external components
Can be powered from data line. Power supply range is 3.0V to 5.5V
Zero standby power required
Measures temperatures from -55°C to +125°C. Fahrenheit equivalent is -67°F to +257°F
±0.5°C accuracy from -10°C to +85°C
Thermometer resolution is programmable from 9 to 12 bits
Converts 12-bit temperature to digital word in 750 ms (max.)
User-definable, nonvolatile temperature alarm settings
Alarm search command identifies and addresses devices whose temperature is outside of programmed limits (temperature
alarm condition)
Applications include thermostatic controls, industrial systems, consumer products,
thermometers, or any thermally sensitive system
讀取STM32芯片內部唯一的標識,用于加密等區別其他芯片的操作,有完整注釋,測試通過-STM32 chip to read a unique identifier for the encryption and other differences other chip operation, with complete notes, test
A MEMS microphone IC is unique among Analog Devices, Inc., products in that its input is an acoustic pressure wave. For this reason, some specifications included in the data sheets for these parts may not be familiar, or familiar specifications may be applied in unfamiliar ways. This application note explains the specifica-tions and terms found in MEMS microphone data sheets so that the microphone can be appropriately designed into a system.
This unique guide to designing digital VLSI circuits takes a top-down approach, reflecting the natureof the design process in industry. Starting with architecture design, the book explains the why andhow of digital design, using the physics that designers need to know, and no more.Covering system and component aspects, design verification, VHDL modelling, clocking, signalintegrity, layout, electricaloverstress, field-programmable logic, economic issues, and more, thescope of the book is singularly comprehensive.
This note describes some of the unique IC design techniques incorporated into a fast, monolithic power buffer, the LT1010. Also, some application ideas are described such as capacitive load driving, boosting fast op amp output current and power supply circuits.
Advances in low power electronics now allow placementof battery-powered sensors and other devices in locationsfar from the power grid. Ideally, for true grid independence,the batteries should not need replacement, but instead berecharged using locally available renewable energy, suchas solar power. This Design Note shows how to producea compact battery charger that operates from a small2-cell solar panel. A unique feature of this design is thatthe DC/DC converter uses power point control to extractmaximum power from the solar panel.