oreilly的書一般都經典,具體看書吧,oreilly.managing.projects.with.gnu.make.3rd.edition
標簽: oreilly
上傳時間: 2014-08-23
上傳用戶:himbly
ALICE 利用AIML (Artificial Intelligence Markup Language)來形成對你的查詢和輸入的響應。不像其它花費數(shù)千美元的商業(yè)聊天機器人軟件,ALICE可以按照 GNU Public License免費使用。
標簽: Intelligence Artificial Language Markup
上傳時間: 2014-01-24
上傳用戶:xsnjzljj
一款LINUX下的下載軟件,遵循GNU協(xié)議。
上傳時間: 2014-01-21
上傳用戶:q123321
LINUX下的混音軟件,遵循GNU協(xié)議。
上傳時間: 2014-01-15
上傳用戶:磊子226
利用ATMEGA128芯片的雙串口,UART0連接西門子MC55,UART1連接到RS232,將RS232接收到的數(shù)據(jù)包,通過MC55自帶的TCP/IP棧以GPRS連接到INTERNET,并發(fā)送到制定IP地址和端口的主機。開發(fā)環(huán)境AVRSTUDIO,WINAVR,GNU C++,通過測試。
上傳時間: 2013-12-21
上傳用戶:gundamwzc
3、使用如下命令更改密碼: shell> mysqladmin -u root -p password ‘newpass’ Enter Password:******* 出現(xiàn)Enter Password的提示后輸入原來的密碼oldpass即可。 讀者可以嘗試其它所有本章介紹的方法。 4、首先以root用戶的身份連接到服務器: shell> mysql -u root -p Enter password:******* 出現(xiàn)Enter password提后輸入root用戶的密碼,然后即進入mysql客戶機的交互模式,可以看到下面的提示: Welcome to the MySQL monitor. Commands end with or \g. Your MySQL connection id is 4 to server version: 3.23.25-beta-log Type help or \h for help. Type \c to clear the buffer mysql> 然后發(fā)布查詢,直接鍵入題目中的語句: mysql> SELECT User,Host FROM mysql.user
標簽: Enter mysqladmin Password password
上傳時間: 2016-03-17
上傳用戶:talenthn
Sofia-SIP is an open-source SIP User-Agent library, compliant with the IETF RFC3261 specification. It can be used as a building block for SIP client software for uses such as VoIP, IM, and many other real-time and person-to-person communication services. The primary target platform for Sofia-SIP is GNU/Linux. Sofia-SIP is based on a SIP stack developed at the Nokia Research Center.
標簽: specification open-source User-Agent Sofia-SIP
上傳時間: 2016-03-20
上傳用戶:洛木卓
杜云海的學習報告,詳細介紹ARM映象文件及執(zhí)行機理,及ARM Bios源碼分析,及GNU之映象機理等
上傳時間: 2013-12-26
上傳用戶:cccole0605
SimpleScaler(RISC處理器仿真分析程序)指令集相對應的匯編,鏈接程序源碼。由通用GNU binutils改寫而得。應在Linux下編譯,運行。
標簽: SimpleScaler RISC 處理器 仿真分析
上傳時間: 2014-01-11
上傳用戶:qiao8960
On-Line MCMC Bayesian Model Selection This demo demonstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps to perform model selection in neural networks. We treat both the model dimension (number of neurons) and model parameters as unknowns. The derivation and details are presented in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Sequential Bayesian Estimation and Model Selection Applied to Neural Networks . Technical report CUED/F-INFENG/TR 341, Cambridge University Department of Engineering, June 1999. After downloading the file, type "tar -xf version2.tar" to uncompress it. This creates the directory version2 containing the required m files. Go to this directory, load matlab5 and type "smcdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.
標簽: demonstrates sequential Selection Bayesian
上傳時間: 2016-04-07
上傳用戶:lindor