亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

GRID-ENABL

  • DHT11溫濕度檢測

    由STC89C51單片機來控制DHT11傳感器采集的溫濕度的轉換、1602液晶屏的顯示,以及蜂鳴器的報警。

    標簽: DHT 11 溫濕度檢測

    上傳時間: 2018-04-27

    上傳用戶:luson

  • UCosIII

    實驗項目一、單任務實驗 讓LED以1Hz頻率進行閃爍。 實驗項目二、定時查詢實驗 按下按鍵后點亮LED0、松開按鍵后熄滅LED0。 實驗項目三、多任務實驗 讓LED0、LED1和LED3分別以1Hz、2Hz和3Hz的頻率進行閃爍 實驗項目四、臨界區實驗 按一次按鍵點亮LED0、再按一次按鍵熄滅LED0

    標簽: UCosIII

    上傳時間: 2019-05-02

    上傳用戶:Shawn11

  • 重力異常正演MATLAB程序

    %球體 close all; G=6.67e-11; R=2;%球體半徑 p=4.0;%密度 D=10.0;%深度 M=(4/3)*pi*R^3*p;%質量 x=-20:1:20; g=G*M*D./((x.^2+D^2).^(3/2)); Vxz=-3*G*M*D.*x./((x.^2+D^2).^(5/2)); Vzz=G*M.*(2*D^2-x.^2)./((x.^2+D^2).^(5/2)); Vzzz=3*G*M.*(2*D^2-3.*x.^2)./((x.^2+D^2).^(7/2)); subplot(2,2,1) plot(x,g,'k-'); xlabel('水平距離(m)'); ylabel('重力異常值'); title('球體重力異常Δg'); grid on subplot(2,2,2) plot(x,Vxz); xlabel('水平距離(m)'); ylabel('導數值'); title('Vxz'); grid on subplot(2,2,3) plot(x,Vzz); xlabel('水平距離(m)'); ylabel('導數值'); title('Vzz'); grid on subplot(2,2,4); plot(x,Vzzz); xlabel('水平距離(m)'); ylabel('導數值'); title('Vzzz'); grid on %% %水平圓柱體 close all G=6.67e-11; p=10.0;%線密度 D=100.0;%深度 x=-200:1:200; g=G*2*p*D./(x.^2+D^2); Vxz=4*G*p*D.*x./(x.^2+D^2).^2; Vzz=2*G*p.*(D^2-x.^2)./(x.^2+D^2).^2; Vzzz=4*G*p.*(D^2-3.*x.^2)./((x.^2+D^2).^3); subplot(2,2,1) plot(x,g,'k-'); xlabel('水平距離(m)'); ylabel('重力異常值'); title('水平圓柱體重力異常Δg'); grid on subplot(2,2,2) plot(x,Vxz); xlabel('水平距離(m)'); ylabel('導數值'); title('Vxz'); grid on subplot(2,2,3) plot(x,Vzz); xlabel('水平距離(m)'); ylabel('導數值'); title('Vzz'); grid on subplot(2,2,4); plot(x,Vzzz); xlabel('水平距離(m)'); ylabel('導數值'); title('Vzzz'); grid on %% %垂直臺階 G=6.67e-11; p=4.0;%密度 h1=50.0;%下層深度 h2=40.0;%上層深度 x=-100:1:100; g=G*p.*(pi*(h1-h2)+x.*log((x.^2+h1^2)./(x.^2+h2^2))+2*h1.*atan(x./h1)-2*h2.*atan(x./h2)); Vxz=G*p.*log((h1^2+x.^2)./(h2^2+x.^2)); Vzz=2*G*p.*atan((x.*(h1-h2))./(x.^2+h1*h2)); Vzzz=2*G*p.*x*(h1^2-h2^2)./((h1^2+x.^2).*(x.^2+h2^2)); subplot(2,2,1) plot(x,g,'k-'); xlabel('水平距離(m)'); ylabel('重力異常值'); title('垂直臺階重力異常Δg'); grid on subplot(2,2,2) plot(x,Vxz); xlabel('水平距離(m)'); ylabel('導數值'); title('Vxz'); grid on subplot(2,2,3) plot(x,Vzz); xlabel('水平距離(m)'); ylabel('導數值'); title('Vzz'); grid on subplot(2,2,4); plot(x,Vzzz); xlabel('水平距離(m)'); ylabel('導數值'); title('Vzzz'); grid on %% %傾斜臺階 G=6.67e-11; p=4.0;%密度 h1=50.0;%下層深度 h2=40.0;%上層深度 a=pi/6;%傾斜角度 x=-500:1:500; g=G*p.*(pi*(h1-h2)+2*h1.*atan((x+h1*cot(a))./h1)-2*h2.*atan((x+h2*cot(a))./h1)+x.*sin(a)^2.*log(((h1+x.*sin(a).*cos(a)).^2+x.^2.*sin(a)^4)./((h2+x.*(sin(a)*cos(a))).^2+x.^2.*sin(a)^4))); Vxz=G*p.*(sin(a)^2.*log(((h1*cot(a)+x).^2+h1^2)./((h2*cot(a)+x).^2+h2^2))-2*sin(2*a).*(atan((h1/sin(a)+x.*cos(a))./(x.*sin(a)))-atan((h2/sin(a)+x.^cos(a))./(sin(a).*x)))); Vzz=G*p.*(0.5*sin(2*a)^2.*log(((h1*cot(a)+x).^2+h1^2)./((h2*cot(a)+x).^2+h2^2))+2*sin(a)^2.*(atan((h1/sin(a)+x.*cos(a))./(x.*sin(a)))-atan((h2/sin(a)+x.*cos(a))./(x.*sin(a))))); Vzzz=2*G*p*sin(a)^2.*((x+2*h2*cot(a))./((h2*cot(a)+x).^2+h2^2)-(x+2*h1*cot(a))./((h1*cot(a)+x).^2+h1^2)); subplot(2,2,1) plot(x,g,'k-'); xlabel('水平距離(m)'); ylabel('重力異常值'); title('傾斜臺階重力異常Δg'); grid on subplot(2,2,2) plot(x,Vxz); xlabel('水平距離(m)'); ylabel('導數值'); title('Vxz'); grid on subplot(2,2,3) plot(x,Vzz); xlabel('水平距離(m)'); ylabel('導數值'); title('Vzz'); grid on subplot(2,2,4); plot(x,Vzzz); xlabel('水平距離(m)'); ylabel('導數值'); title('Vzzz'); grid on %% %鉛錘柱體 G=6.67e-11; p=4.0;%密度 h1=50.0;%下層深度 h2=40.0;%上層深度 a=3;%半徑 x=-500:1:500; g=G*p.*((x+a).*log(((x+a).^2+h1^2)./((x+a).^2+h2^2))-(x-a).*log(((x-a).^2+h1^2)./((x-a).^2+h2^2))+2*h1.*(atan((x+a)./h1)-atan((x-a)./h1))-2*h2.*(atan((x+a)./h2)-atan((x-a)./h2))); Vxz=G*p.*log((((x+a).^2+h1^2).*((x-a).^2+h2^2))./(((x+a).^2+h2^2).*((x-a).^2+h1^2))); Vzz=2*G*p.*(atan(h1./(x+a))-atan(h2./(x+a))-atan(h1./(x-a))+atan(h2./(x-a))); Vzzz=2*G*p.*((x+a)./((x+a).^2+h2^2)-(x+a)./((x+a).^2+h1^2)-(x-a)./((x-a).^2+h2^2)+(x-a)./((x-a).^2+h1^2)); subplot(2,2,1) plot(x,g,'k-'); xlabel('水平距離/m') ylabel('重力異常值') title('鉛垂柱體重力異常') grid on subplot(2,2,2) plot(x,Vxz); xlabel('水平距離(m)'); ylabel('導數值'); title('Vxz'); grid on subplot(2,2,3) plot(x,Vzz); xlabel('水平距離(m)'); ylabel('導數值'); title('Vzz'); grid on subplot(2,2,4); plot(x,Vzzz); xlabel('水平距離(m)'); ylabel('導數值'); title('Vzzz'); grid on

    標簽: MATLAB 重力 程序

    上傳時間: 2019-05-10

    上傳用戶:xiajiang

  • R-SLAM--Resilient localization and mapping

    Accurate pose estimation plays an important role in solution of simultaneous localization and mapping (SLAM) problem, required for many robotic applications. This paper presents a new approach called R-SLAM, primarily to overcome systematic and non-systematic odometry errors which are generally caused by uneven floors, unexpected objects on the floor or wheel-slippage due to skidding or fast turns.The hybrid approach presented here combines the strengths of feature based and grid based methods to produce globally consistent high resolution maps within various types of environments.

    標簽: localization environments challenging Resilient mapping R-SLAM and in

    上傳時間: 2019-09-15

    上傳用戶:zhudx2007

  • Data+Processing+in+Smart+Cities

    Smart Grids provide many benefits for society. Reliability, observability across the energy distribution system and the exchange of information between devices are just some of the features that make Smart Grids so attractive. One of the main products of a Smart Grid is to data. The amount of data available nowadays increases fast and carries several kinds of information. Smart metres allow engineers to perform multiple measurements and analyse such data. For example, information about consumption, power quality and digital protection, among others, can be extracted. However, the main challenge in extracting information from data arises from the data quality. In fact, many sectors of the society can benefit from such data. Hence, this information needs to be properly stored and readily available. In this chapter, we will address the main concepts involving Technology Information, Data Mining, Big Data and clustering for deploying information on Smart Grids.

    標簽: Processing Cities Smart Data in

    上傳時間: 2020-05-23

    上傳用戶:shancjb

  • Data+Processing+in+Smart+Cities

    Smart Grids provide many benefits for society. Reliability, observability across the energy distribution system and the exchange of information between devices are just some of the features that make Smart Grids so attractive. One of the main products of a Smart Grid is to data. The amount of data available nowadays increases fast and carries several kinds of information. Smart metres allow engineers to perform multiple measurements and analyse such data. For example, information about consumption, power quality and digital protection, among others, can be extracted. However, the main challenge in extracting information from data arises from the data quality. In fact, many sectors of the society can benefit from such data. Hence, this information needs to be properly stored and readily available. In this chapter, we will address the main concepts involving Technology Information, Data Mining, Big Data and clustering for deploying information on Smart Grids.

    標簽: Processing Cities Smart Data

    上傳時間: 2020-05-25

    上傳用戶:shancjb

  • HOMEPLUG+AV+AND IEEE 1901

    Broadband powerline communication systems are continuing to gain significant market adoption worldwide for applications ranging from IPTV delivery to the Smart Grid. The suite of standards developed by the HomePlug Powerline Alliance plays an important role in the widespread deployment of broadband PLC. To date, more than 100 million HomePlug modems are deployed and these numbers continue to rise.

    標簽: HOMEPLUG 1901 IEEE AV

    上傳時間: 2020-05-26

    上傳用戶:shancjb

  • HOMEPLUG+AV+AND

    Broadband powerline communication systems are continuing to gain significant market adoption worldwide for applications ranging from IPTV delivery to the Smart Grid. The suite of standards developed by the HomePlug Powerline Alliance plays an important role in the widespread deployment of broadband PLC. To date, more than 100 million HomePlug modems are deployed and these numbers continue to rise.

    標簽: HOMEPLUG AND AV

    上傳時間: 2020-06-06

    上傳用戶:shancjb

  • Cognitive+Radio+Networks

    Resource allocation is an important issue in wireless communication networks. In recent decades, cognitive radio technology and cognitive radio-based networks have obtained more and more attention and have been well studied to improve spectrum utilization and to overcomethe problem of spectrum scarcity in future wireless com- munication systems. Many new challenges on resource allocation appear in cogni- tive radio-based networks. In this book, we focus on effective solutions to resource allocation in several important cognitive radio-based networks, including a cogni- tive radio-basedopportunisticspectrum access network, a cognitiveradio-basedcen- tralized network, a cognitive radio-based cellular network, a cognitive radio-based high-speed vehicle network, and a cognitive radio-based smart grid.

    標簽: Cognitive Networks Radio

    上傳時間: 2020-06-07

    上傳用戶:shancjb

  • Communication+Networks

    n its Framework and Roadmap for Smart Grid Interoperability Standards, the US National Institute of Standards and Technology declares that a twenty-first-century clean energy economy demands a twenty-first-century electric grid. 1 The start of the twenty-first century marked the acceleration of the Smart Grid evolution. The goals of this evolution are broad, including the promotion of widespread and distributed deployment of renewable energy sources, increased energy efficiency, peak power reduction, automated demand response, improved reliability, lower energy delivery costs, and consumer participation in energy management.

    標簽: Communication Networks

    上傳時間: 2020-06-07

    上傳用戶:shancjb

主站蜘蛛池模板: 津南区| 疏勒县| 鄂托克旗| 和顺县| 乌鲁木齐县| 巫溪县| 北安市| 兖州市| 庄河市| 赤峰市| 如皋市| 邳州市| 营山县| 九龙坡区| 通城县| 江川县| 南充市| 永平县| 淳安县| 平度市| 永德县| 海原县| 偏关县| 文安县| 永清县| 平山县| 新和县| 兴宁市| 应城市| 纳雍县| 萍乡市| 阿图什市| 贵港市| 古浪县| 六盘水市| 钦州市| 宜昌市| 深州市| 嵊泗县| 普兰店市| 平和县|