亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

Gaussian

Gaussian是一個功能強大的量子化學(xué)綜合軟件包。其可執(zhí)行程序可在不同型號的大型計算機,超級計算機,工作站和個人計算機上運行,并相應(yīng)有不同的版本。高斯功能:過渡態(tài)能量和結(jié)構(gòu)、鍵和反應(yīng)能量、分子軌道、原子電荷和電勢、振動頻率、紅外和拉曼光譜、核磁性質(zhì)、極化率和超極化率、熱力學(xué)性質(zhì)、反應(yīng)路徑,計算可以對體系的基態(tài)或激發(fā)態(tài)執(zhí)行。可以預(yù)測周期體系的能量,結(jié)構(gòu)和分子軌道。因此,Gaussian可以作為功能強大的工具,用于研究許多化學(xué)領(lǐng)域的課題,例如取代基的影響,化學(xué)反應(yīng)機理,勢能曲面和激發(fā)能等等。常常與gaussview連用。
  • zemax源碼: This DLL models a standard ZEMAX surface type, either plane, sphere, or conic The surfac

    zemax源碼: This DLL models a standard ZEMAX surface type, either plane, sphere, or conic The surface also demonstrates a user-defined apodization filter The filter is defined as part of the real ray trace, case 5 The filter can be used at the stop to produce x-y Gaussian apodization similar to the Gaussian pupil apodization in ZEMAX but separate in x and y. The amplitude apodization is of the form EXP[-(Gx(x/R)^2 + Gy(y/R)^2)] The transmission is of the form EXP[-2(Gx(x/R)^2 + Gy(y/R)^2)] where x^2 + y^2 = r^2 R = semi-diameter The tranmitted intensity is maximum in the center. T is set to 0 if semi-diameter < 1e-10 to avoid division by zero.

    標(biāo)簽: standard surface models either

    上傳時間: 2013-12-05

    上傳用戶:003030

  • 利用二元域的高斯消元法得到輸入矩陣H對應(yīng)的生成矩陣G

    利用二元域的高斯消元法得到輸入矩陣H對應(yīng)的生成矩陣G,同時返回與G滿足mod(G*P ,2)=0的矩陣P,其中P 表示P的轉(zhuǎn)置 使用方法:[P,G]=Gaussian(H,x),x=1 or 2,1表示G的左邊為單位陣

    標(biāo)簽: 矩陣 二元 高斯 輸入

    上傳時間: 2014-11-27

    上傳用戶:semi1981

  • 這是一個非常簡單的遺傳算法源代碼

    這是一個非常簡單的遺傳算法源代碼,代碼保證盡可能少,實際上也不必查錯。對一特定的應(yīng)用修正此代碼,用戶只需改變常數(shù)的定義并且定義“評價函數(shù)”即可。注意代碼 的設(shè)計是求最大值,其中的目標(biāo)函數(shù)只能取正值;且函數(shù)值和個體的適應(yīng)值之間沒有區(qū)別。該系統(tǒng)使用比率選擇、精華模型、單點雜交和均勻變異。如果用 Gaussian變異替換均勻變異,可能得到更好的效果。代碼沒有任何圖形,甚至也沒有屏幕輸出,主要是保證在平臺之間的高可移植性。讀者可以從ftp.uncc.edu, 目錄 coe/evol中的文件prog.c中獲得。要求輸入的文件應(yīng)該命名為‘gadata.txt’;系統(tǒng)產(chǎn)生的輸出文件為‘galog.txt’。輸入的 文件由幾行組成:數(shù)目對應(yīng)于變量數(shù)。且每一行提供次序——對應(yīng)于變量的上下界。如第一行為第一個變量提供上下界,第二行為第二個變量提供上下界,等等。

    標(biāo)簽: 算法 源代碼

    上傳時間: 2015-10-16

    上傳用戶:曹云鵬

  • 基于libsvm

    基于libsvm,開發(fā)的支持向量機圖形界面(初級水平)應(yīng)用程序,并提供了關(guān)于C和sigma的新的參數(shù)選擇方法,使得SVM的使用更加簡單直觀.參考文章 Fast and Efficient Strategies for Model Selection of Gaussian Support Vector Machine 可google之。

    標(biāo)簽: libsvm

    上傳時間: 2015-10-16

    上傳用戶:cuibaigao

  • In this article, we present an overview of methods for sequential simulation from posterior distribu

    In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and non-Gaussian. A general importance sampling framework is developed that unifies many of the methods which have been proposed over the last few decades in several different scientific disciplines. Novel extensions to the existing methods are also proposed.We showin particular how to incorporate local linearisation methods similar to those which have previously been employed in the deterministic filtering literature these lead to very effective importance distributions. Furthermore we describe a method which uses Rao-Blackwellisation in order to take advantage of the analytic structure present in some important classes of state-space models. In a final section we develop algorithms for prediction, smoothing and evaluation of the likelihood in dynamic models.

    標(biāo)簽: sequential simulation posterior overview

    上傳時間: 2015-12-31

    上傳用戶:225588

  • The need for accurate monitoring and analysis of sequential data arises in many scientic, industria

    The need for accurate monitoring and analysis of sequential data arises in many scientic, industrial and nancial problems. Although the Kalman lter is effective in the linear-Gaussian case, new methods of dealing with sequential data are required with non-standard models. Recently, there has been renewed interest in simulation-based techniques. The basic idea behind these techniques is that the current state of knowledge is encapsulated in a representative sample from the appropriate posterior distribution. As time goes on, the sample evolves and adapts recursively in accordance with newly acquired data. We give a critical review of recent developments, by reference to oil well monitoring, ion channel monitoring and tracking problems, and propose some alternative algorithms that avoid the weaknesses of the current methods.

    標(biāo)簽: monitoring sequential industria accurate

    上傳時間: 2013-12-17

    上傳用戶:familiarsmile

  • 用于產(chǎn)生gamma分布的噪聲序列

    用于產(chǎn)生gamma分布的噪聲序列,以及分析Gaussian噪聲的各參數(shù)。

    標(biāo)簽: gamma 分布 序列

    上傳時間: 2016-01-08

    上傳用戶:xfbs821

  • 一個遺傳算法 這是一個非常簡單的遺傳算法源代碼

    一個遺傳算法 這是一個非常簡單的遺傳算法源代碼,是由Denis Cormier (North Carolina State University)開發(fā)的,Sita S.Raghavan (University of North Carolina at Charlotte)修正。代碼保證盡可能少,實際上也不必查錯。對一特定的應(yīng)用修正此代碼,用戶只需改變常數(shù)的定義并且定義“評價函數(shù)”即可。注意代碼 的設(shè)計是求最大值,其中的目標(biāo)函數(shù)只能取正值;且函數(shù)值和個體的適應(yīng)值之間沒有區(qū)別。該系統(tǒng)使用比率選擇、精華模型、單點雜交和均勻變異。如果用 Gaussian變異替換均勻變異,可能得到更好的效果。代碼沒有任何圖形,甚至也沒有屏幕輸出,主要是保證在平臺之間的高可移植性。讀者可以從ftp.uncc.edu, 目錄 coe/evol中的文件prog.c中獲得。要求輸入的文件應(yīng)該命名為‘gadata.txt’;系統(tǒng)產(chǎn)生的輸出文件為‘galog.txt’。輸入的 文件由幾行組成:數(shù)目對應(yīng)于變量數(shù)。且每一行提供次序——對應(yīng)于變量的上下界。如第一行為第一個變量提供上下界,第二行為第二個變量提供上下界,等等。

    標(biāo)簽: 算法 源代碼

    上傳時間: 2013-12-20

    上傳用戶:myworkpost

  • EM算法是機器學(xué)習(xí)領(lǐng)域中常用的一種算法

    EM算法是機器學(xué)習(xí)領(lǐng)域中常用的一種算法,這個文件是EM算法最簡單的一種實現(xiàn),即在Gaussian Mixture model上面的EM。

    標(biāo)簽: EM算法 機器學(xué)習(xí) 算法

    上傳時間: 2013-12-11

    上傳用戶:wxhwjf

  • The software implements particle filtering and Rao Blackwellised particle filtering for conditionall

    The software implements particle filtering and Rao Blackwellised particle filtering for conditionally Gaussian Models. The RB algorithm can be interpreted as an efficient stochastic mixture of Kalman filters. The software also includes efficient state-of-the-art resampling routines. These are generic and suitable for any application. For details, please refer to Rao-Blackwellised Particle Filtering for Fault Diagnosis and On Sequential Simulation-Based Methods for Bayesian Filtering After downloading the file, type "tar -xf demo_rbpf_gauss.tar" to uncompress it. This creates the directory webalgorithm containing the required m files. Go to this directory, load matlab and run the demo.

    標(biāo)簽: filtering particle Blackwellised conditionall

    上傳時間: 2014-12-05

    上傳用戶:410805624

主站蜘蛛池模板: 海兴县| 白玉县| 游戏| 新营市| 昌邑市| 龙口市| 根河市| 五家渠市| 怀来县| 繁昌县| 茶陵县| 大足县| 疏附县| 同德县| 麟游县| 黑水县| 酉阳| 嘉祥县| 黄浦区| 汶川县| 伊川县| 美姑县| 襄城县| 渑池县| 滦平县| 徐闻县| 平谷区| 海南省| 东宁县| 龙门县| 凤冈县| 长子县| 林甸县| 蕉岭县| 连江县| 德化县| 永年县| 乌苏市| 临泽县| 贡嘎县| 杭州市|