%球體
close all;
G=6.67e-11;
R=2;%球體半徑
p=4.0;%密度
D=10.0;%深度
M=(4/3)*pi*R^3*p;%質量
x=-20:1:20;
g=G*M*D./((x.^2+D^2).^(3/2));
Vxz=-3*G*M*D.*x./((x.^2+D^2).^(5/2));
Vzz=G*M.*(2*D^2-x.^2)./((x.^2+D^2).^(5/2));
Vzzz=3*G*M.*(2*D^2-3.*x.^2)./((x.^2+D^2).^(7/2));
subplot(2,2,1)
plot(x,g,'k-');
xlabel('水平距離(m)');
ylabel('重力異常值');
title('球體重力異常Δg');
Grid on
subplot(2,2,2)
plot(x,Vxz);
xlabel('水平距離(m)');
ylabel('導數值');
title('Vxz');
Grid on
subplot(2,2,3)
plot(x,Vzz);
xlabel('水平距離(m)');
ylabel('導數值');
title('Vzz');
Grid on
subplot(2,2,4);
plot(x,Vzzz);
xlabel('水平距離(m)');
ylabel('導數值');
title('Vzzz');
Grid on
%%
%水平圓柱體
close all
G=6.67e-11;
p=10.0;%線密度
D=100.0;%深度
x=-200:1:200;
g=G*2*p*D./(x.^2+D^2);
Vxz=4*G*p*D.*x./(x.^2+D^2).^2;
Vzz=2*G*p.*(D^2-x.^2)./(x.^2+D^2).^2;
Vzzz=4*G*p.*(D^2-3.*x.^2)./((x.^2+D^2).^3);
subplot(2,2,1)
plot(x,g,'k-');
xlabel('水平距離(m)');
ylabel('重力異常值');
title('水平圓柱體重力異常Δg');
Grid on
subplot(2,2,2)
plot(x,Vxz);
xlabel('水平距離(m)');
ylabel('導數值');
title('Vxz');
Grid on
subplot(2,2,3)
plot(x,Vzz);
xlabel('水平距離(m)');
ylabel('導數值');
title('Vzz');
Grid on
subplot(2,2,4);
plot(x,Vzzz);
xlabel('水平距離(m)');
ylabel('導數值');
title('Vzzz');
Grid on
%%
%垂直臺階
G=6.67e-11;
p=4.0;%密度
h1=50.0;%下層深度
h2=40.0;%上層深度
x=-100:1:100;
g=G*p.*(pi*(h1-h2)+x.*log((x.^2+h1^2)./(x.^2+h2^2))+2*h1.*atan(x./h1)-2*h2.*atan(x./h2));
Vxz=G*p.*log((h1^2+x.^2)./(h2^2+x.^2));
Vzz=2*G*p.*atan((x.*(h1-h2))./(x.^2+h1*h2));
Vzzz=2*G*p.*x*(h1^2-h2^2)./((h1^2+x.^2).*(x.^2+h2^2));
subplot(2,2,1)
plot(x,g,'k-');
xlabel('水平距離(m)');
ylabel('重力異常值');
title('垂直臺階重力異常Δg');
Grid on
subplot(2,2,2)
plot(x,Vxz);
xlabel('水平距離(m)');
ylabel('導數值');
title('Vxz');
Grid on
subplot(2,2,3)
plot(x,Vzz);
xlabel('水平距離(m)');
ylabel('導數值');
title('Vzz');
Grid on
subplot(2,2,4);
plot(x,Vzzz);
xlabel('水平距離(m)');
ylabel('導數值');
title('Vzzz');
Grid on
%%
%傾斜臺階
G=6.67e-11;
p=4.0;%密度
h1=50.0;%下層深度
h2=40.0;%上層深度
a=pi/6;%傾斜角度
x=-500:1:500;
g=G*p.*(pi*(h1-h2)+2*h1.*atan((x+h1*cot(a))./h1)-2*h2.*atan((x+h2*cot(a))./h1)+x.*sin(a)^2.*log(((h1+x.*sin(a).*cos(a)).^2+x.^2.*sin(a)^4)./((h2+x.*(sin(a)*cos(a))).^2+x.^2.*sin(a)^4)));
Vxz=G*p.*(sin(a)^2.*log(((h1*cot(a)+x).^2+h1^2)./((h2*cot(a)+x).^2+h2^2))-2*sin(2*a).*(atan((h1/sin(a)+x.*cos(a))./(x.*sin(a)))-atan((h2/sin(a)+x.^cos(a))./(sin(a).*x))));
Vzz=G*p.*(0.5*sin(2*a)^2.*log(((h1*cot(a)+x).^2+h1^2)./((h2*cot(a)+x).^2+h2^2))+2*sin(a)^2.*(atan((h1/sin(a)+x.*cos(a))./(x.*sin(a)))-atan((h2/sin(a)+x.*cos(a))./(x.*sin(a)))));
Vzzz=2*G*p*sin(a)^2.*((x+2*h2*cot(a))./((h2*cot(a)+x).^2+h2^2)-(x+2*h1*cot(a))./((h1*cot(a)+x).^2+h1^2));
subplot(2,2,1)
plot(x,g,'k-');
xlabel('水平距離(m)');
ylabel('重力異常值');
title('傾斜臺階重力異常Δg');
Grid on
subplot(2,2,2)
plot(x,Vxz);
xlabel('水平距離(m)');
ylabel('導數值');
title('Vxz');
Grid on
subplot(2,2,3)
plot(x,Vzz);
xlabel('水平距離(m)');
ylabel('導數值');
title('Vzz');
Grid on
subplot(2,2,4);
plot(x,Vzzz);
xlabel('水平距離(m)');
ylabel('導數值');
title('Vzzz');
Grid on
%%
%鉛錘柱體
G=6.67e-11;
p=4.0;%密度
h1=50.0;%下層深度
h2=40.0;%上層深度
a=3;%半徑
x=-500:1:500;
g=G*p.*((x+a).*log(((x+a).^2+h1^2)./((x+a).^2+h2^2))-(x-a).*log(((x-a).^2+h1^2)./((x-a).^2+h2^2))+2*h1.*(atan((x+a)./h1)-atan((x-a)./h1))-2*h2.*(atan((x+a)./h2)-atan((x-a)./h2)));
Vxz=G*p.*log((((x+a).^2+h1^2).*((x-a).^2+h2^2))./(((x+a).^2+h2^2).*((x-a).^2+h1^2)));
Vzz=2*G*p.*(atan(h1./(x+a))-atan(h2./(x+a))-atan(h1./(x-a))+atan(h2./(x-a)));
Vzzz=2*G*p.*((x+a)./((x+a).^2+h2^2)-(x+a)./((x+a).^2+h1^2)-(x-a)./((x-a).^2+h2^2)+(x-a)./((x-a).^2+h1^2));
subplot(2,2,1)
plot(x,g,'k-');
xlabel('水平距離/m')
ylabel('重力異常值')
title('鉛垂柱體重力異常')
Grid on
subplot(2,2,2)
plot(x,Vxz);
xlabel('水平距離(m)');
ylabel('導數值');
title('Vxz');
Grid on
subplot(2,2,3)
plot(x,Vzz);
xlabel('水平距離(m)');
ylabel('導數值');
title('Vzz');
Grid on
subplot(2,2,4);
plot(x,Vzzz);
xlabel('水平距離(m)');
ylabel('導數值');
title('Vzzz');
Grid on
標簽:
MATLAB
重力
正
程序
上傳時間:
2019-05-10
上傳用戶:xiajiang
Smart Grids provide many benefits for society. Reliability, observability across the
energy distribution system and the exchange of information between devices are just
some of the features that make Smart Grids so attractive. One of the main products of
a Smart Grid is to data. The amount of data available nowadays increases fast and carries
several kinds of information. Smart metres allow engineers to perform multiple
measurements and analyse such data. For example, information about consumption,
power quality and digital protection, among others, can be extracted. However, the main
challenge in extracting information from data arises from the data quality. In fact, many
sectors of the society can benefit from such data. Hence, this information needs to be
properly stored and readily available. In this chapter, we will address the main concepts
involving Technology Information, Data Mining, Big Data and clustering for deploying
information on Smart Grids.
標簽:
Processing
Cities
Smart
Data
in
上傳時間:
2020-05-23
上傳用戶:shancjb
Smart Grids provide many benefits for society. Reliability, observability across the
energy distribution system and the exchange of information between devices are just
some of the features that make Smart Grids so attractive. One of the main products of
a Smart Grid is to data. The amount of data available nowadays increases fast and carries
several kinds of information. Smart metres allow engineers to perform multiple
measurements and analyse such data. For example, information about consumption,
power quality and digital protection, among others, can be extracted. However, the main
challenge in extracting information from data arises from the data quality. In fact, many
sectors of the society can benefit from such data. Hence, this information needs to be
properly stored and readily available. In this chapter, we will address the main concepts
involving Technology Information, Data Mining, Big Data and clustering for deploying
information on Smart Grids.
標簽:
Processing
Cities
Smart
Data
上傳時間:
2020-05-25
上傳用戶:shancjb