The STi7105 uses state of the art process
technology to provide an ultra low-cost, fully
featured HD AVC decoder IC. It is a highly
integrated system-on-chip suitable for STB markets across all networks (cable/satellite/DTT/x-
DSL/IP) worldwide
The TAS3204 is a highly-integrated audio system-on-chip (SOC) consisting of a fully-programmable, 48-bit digital audio processor, a 3:1 stereo analog input MUX, four ADCs, four DACs, and other analog functionality. The TAS3204 is programmable with the graphical PurePath Studio? suite of DSP code development software. PurePath Studio is a highly intuitive, drag-and-drop environment that minimizes software development effort while allowing the end user to utilize the power and flexibility of the TAS3204’s digital audio processing core.
TAS3204 processing capability includes speaker equalization and crossover, volume/bass/treble control, signal mixing/MUXing/splitting, delay compensation, dynamic range compression, and many other basic audio functions. Audio functions such as matrix decoding, stereo widening, surround sound virtualization and psychoacoustic bass boost are also available with either third-party or TI royalty-free algorithms.
The TAS3204 contains a custom-designed, fully-programmable 135-MHz, 48-bit digital audio processor. A 76-bit accumulator ensures that the high precision necessary for quality digital audio is maintained during arithmetic operations.
Four differential 102 dB DNR ADCs and four differential 105 dB DNR DACs ensure that high quality audio is maintained through the whole signal chain as well as increasing robustness against noise sources such as TDMA interference.
The TAS3204 is composed of eight functional blocks:
Clocking System
Digital Audio Interface
Analog Audio Interface
Power supply
Clocks, digital PLL
I2C control interface
8051 MCUcontroller
Audio DSP – digital audio processing
特性
Digital Audio Processor
Fully Programmable With the Graphical, Drag-and-Drop PurePath Studio? Software Development Environment
135-MHz Operation
48-Bit Data Path With 76-Bit Accumulator
Hardware Single-Cycle Multiplier (28 × 48)
AEC-Q100 qualified
? 12 V and 24 V battery systems compliance
? 3.3 V and 5 V logic compatible I/O
? 8-channel configurable MOSFET pre-driver
– High-side (N-channel and P-channel MOS)
– Low-side (N-channel MOS)
– H-bridge (up to 2 H-bridge)
– Peak & Hold (2 loads)
? Operating battery supply voltage 3.8 V to 36 V
? Operating VDD supply voltage 4.5 V to 5.5 V
? All device pins, except the ground pins, withstand at least 40 V
? Programmable gate charge/discharge currents for improving EMI behavior
Free Space Optical Communication (FSOC) is an effective alternative technology to
meet the Next Generation Network (NGN) demands as well as highly secured (mili-
tary) communications. FSOC includes various advantages like last mile access, easy
installation, free of Electro Magnetic Interference (EMI)/Electro Magnetic Compatibil-
ity (EMC) and license free access etc. In FSOC, the optical beam propagation in the
turbulentatmosphereisseverelyaffectedbyvariousfactorssuspendedinthechannel,
geographicallocationoftheinstallationsite,terraintypeandmeteorologicalchanges.
Therefore a rigorous experimental study over a longer period becomes significant to
analyze the quality and reliability of the FSOC channel and the maximum data rate
that the system can operate since data transmission is completely season dependent.
Thisbookfocusesontheemergingresearchtopic‘green(energy-efficient)wirelessnetworks’
that has drawn huge attention recently from both academia and industry. This topic is highly
motivated due to important environmental, financial and quality-of-experience (QoE) consid-
erations.Duetosuchconcerns,varioussolutionshavebeenproposedtoenableefficientenergy
usage in wireless networks, and these approaches are referred to as green wireless communi-
cations and networking. The term ‘green’ emphasizes the environmental dimension of the
proposed solutions. Hence, it is not sufficient to present a cost-effective solution unless it is
eco-friendly.
Mobile wireless communications are in constant evolution due to the continu-
ously increasing requirements and expectations of both users and operators.
Mass multimedia* services have been for a long time expected to generate a large
amount of data traffic in future wireless networks [1]. Mass multimedia services
are, by definition, purposed for many people. In general, it can be distinguished
between the distribution of any popular content over a wide area and the distribu-
tion of location-dependent information in highly populated areas. Representative
examples include the delivery of live video streaming content (like sports compe-
titions, concerts, or news) and file download (multimedia clips, digital newspa-
pers, or software updates).
The purpose of this book is to introduce the concept of the Multiple Input Multiple Output
(MIMO) radio channel, which is an intelligent communication method based upon using
multiple antennas. The book opens by explaining MIMO in layman’s terms to help stu-
dents and people in industry working in related areas become easily familiarised with the
concept. Therefore the structure of the book will be carefully arranged to allow a user to
progress steadily through the chapters and understand the fundamental and mathematical
principles behind MIMO through the visual and explanatory way in which they will be
written. It is the intention that several references will also be provided, leading to further
reading in this highly researched technology.
Wireless Mesh Networks (WMN) are believed to be a highly promising
technology and will play an increasingly important role in future
generation wireless mobile networks. WMN is characterized by
dynamic self-organization, self-configuration and self-healing to
enable quick deployment, easy maintenance, low cost, high scalability
and reliable services, as well as enhancing network capacity, connect-
ivity and resilience.
This chapter provides extensive coverage of existing mobile wireless technologies. Much of the
emphasis is on the highly anticipated 3G cellular networks and widely deployed wireless local
area networks (LANs), as the next-generation smart phones are likely to offer at least these two
types of connectivity. Other wireless technologies that either have already been commercialized or
are undergoing active research and standardization are introduced as well. Because standardization
plays a crucial role in developing a new technology and a market, throughout the discussion
standards organizations and industry forums or consortiums of some technologies are introduced.
In addition, the last section of this chapter presents a list of standards in the wireless arena.
Power Electronics is one of modern and key technologies in Electrical and
Electronics Engineering for green power, sustainable energy systems, and smart
grids. Especially, the transformation of existing electric power systems into smart
grids is currently a global trend. The gradual increase of distributed generators in
smart grids indicates a wide and important role for power electronic converters in
the electric power system, also with the increased use of power electronics devices
(nonlinear loads) and motor loadings, low cost, low-loss and high-performance
shunt current quality compensators are highly demanded by power customers to
solve current quality problems caused by those loadings.