無線電能傳輸技術(Wireless Power Transfer Technology)又稱無接觸電能傳輸(Contactless Power Transmission,CPT)技術早在1890 年,由著名電氣工程師(物理學家)尼古拉·特斯拉(Nikola Tesla) 提出。
上傳時間: 2013-10-20
上傳用戶:zhliu007
Radio Frequency Identifi cation (RFID) technology usesradiated and refl ected RF power to identify and track avariety of objects. A typical RFID system consists of areader and a transponder (or tag). An RFID reader containsan RF transmitter, one or more antennas and an RFreceiver. An RFID tag is simply an uniquely identifi ed ICwith an antenna.
上傳時間: 2013-10-17
上傳用戶:lepoke
This document is a quick reference to some of the formulas and important information related to optical technologies. It focuses on decibels (dB), decibels per milliwatt (dBm), attenuation and measurements, and provides an introduction to optical fibers.
上傳時間: 2013-10-17
上傳用戶:libenshu01
闡述了軌道交通列車定位技術。介紹了在軌道交通系統中列車定位技術的功能,國內外軌道交通中主要采用的列車定位方法,重點論述了幾種主要定位技術,并從定位精度、閉塞制式、維護投資成本、抗干擾等方面進行分析比較。提出目前軌道交通定位技術應綜合運用,取長補短,多種方法相互融合,才能滿足軌道交通中對安全可靠性的要求。 Abstract: Rail train positioning technology is described. The paper introduces the funetions of the train positioning technology in the rail transit system, the main methods of train positioning do mestic and international rail, and focuses on several key methods, analyzes and compares from the positioning accuracy, block system, maintenance and investment cost, interference and so on, suggested that the current rail positioning technology should be integrated use of positioning method of meriging, learn from each other, to meet the reliability requirements of rail safety.
上傳時間: 2013-11-25
上傳用戶:franktu
為滿足無線網絡技術具有低功耗、節點體積小、網絡容量大、網絡傳輸可靠等技術要求,設計了一種以MSP430單片機和CC2420射頻收發器組成的無線傳感節點。通過分析其節點組成,提出了ZigBee技術中的幾種網絡拓撲形式,并研究了ZigBee路由算法。針對不同的傳輸要求形式選用不同的網絡拓撲形式可以盡大可能地減少系統成本。同時針對不同網絡選用正確的ZigBee路由算法有效地減少了網絡能量消耗,提高了系統的可靠性。應用試驗表明,采用ZigBee方式通信可以提高傳輸速率且覆蓋范圍大,與傳統的有線通信方式相比可以節約40%左右的成本。 Abstract: To improve the proposed technical requirements such as low-ower, small nodes, large capacity and reliable network transmission, wireless sensor nodes based on MSP430 MCU and CC2420 RF transceiver were designed. This paper provided network topology of ZigBee technology by analysing the component of the nodes and researched ZigBee routing algorithm. Aiming at different requirements of transmission mode to choose the different network topologies form can most likely reduce the system cost. And aiming at different network to choose the correct ZigBee routing algorithm can effectively reduced the network energy consumption and improved the reliability of the system. Results show that the communication which used ZigBee mode can improve the transmission rate, cover more area and reduce 40% cost compared with traditional wired communications mode.
上傳時間: 2013-10-09
上傳用戶:robter
針對UHF讀寫器設計中,在符合EPC Gen2標準的情況下,對標簽返回的高速數據進行正確解碼以達到正確讀取標簽的要求,提出了一種新的在ARM平臺下采用邊沿捕獲統計定時器數判斷數據的方法,并對FM0編碼進行解碼。與傳統的使用定時器定時采樣高低電平的FM0解碼方法相比,該解碼方法可以減少定時器定時誤差累積的影響;可以將捕獲定時器數中斷與數據判斷解碼相對分隔開,使得中斷對解碼影響很小,實現捕獲與解碼的同步。通過實驗表明,這種方法提高了解碼的效率,在160 Kb/s的接收速度下,讀取一張標簽的時間約為30次/s。 Abstract: Aiming at the requirement of receiving correctly decoded data from the tag under high-speed communication which complied with EPC Gen2 standard in the design of UHF interrogator, the article introduced a new technology for FM0 decoding which counted the timer counter to judge data by using the edge interval of signal capture based on the ARM7 platform. Compared with the traditional FM0 decoding method which used the timer timed to sample the high and low level, the method could reduce the accumulation of timing error and could relatively separate capture timer interrupt and the data judgment for decoding, so that the disruption effect on the decoding was small and realizd synchronization of capture and decoding. Testing result shows that the method improves the efficiency of decoding, at 160 Kb/s receiving speed, the time of the interrogator to read a tag is about 30 times/s.
上傳時間: 2013-11-10
上傳用戶:liufei
同步技術是跳頻通信系統的關鍵技術之一,尤其是在快速跳頻通信系統中,常規跳頻通信通過同步字頭攜帶相關碼的方法來實現同步,但對于快跳頻來說,由于是一跳或者多跳傳輸一個調制符號,難以攜帶相關碼。對此引入雙跳頻圖案方法,提出了一種適用于快速跳頻通信系統的同步方案。采用短碼攜帶同步信息,克服了快速跳頻難以攜帶相關碼的困難。分析了同步性能,仿真結果表明該方案同步時間短、虛警概率低、捕獲概率高,同步性能可靠。 Abstract: Synchronization is one of the key techniques to frequency-hopping communication system, especially in the fast frequency hopping communication system. In conventional frequency hopping communication systems, synchronization can be achieved by synchronization-head which can be used to carry the synchronization information, but for the fast frequency hopping, Because modulation symbol is transmitted by per hop or multi-hop, it is difficult to carry the correlation code. For the limitation of fast frequency hopping in carrying correlation code, a fast frequency-hopping synchronization scheme with two hopping patterns is proposed. The synchronization information is carried by short code, which overcomes the difficulty of correlation code transmission in fast frequency-hopping. The performance of the scheme is analyzed, and simulation results show that the scheme has the advantages of shorter synchronization time, lower probability of false alarm, higher probability of capture and more reliable of synchronization.
上傳時間: 2013-11-23
上傳用戶:mpquest
The information in this specification is subject to change without notice.Use of this specification for product design requires an executed license agreement from the CompactFlashAssociation.The CompactFlash Association shall not be liable for technical or editorial errors or omissions contained herein; norfor incidental or consequential damages resulting from the furnishing, performance, or use of this material.All parts of the CompactFlash Specification are protected by copyright law and all rights are reserved. Thisdocumentation may not, in whole or in part, be copied, photocopied, reproduced, translated, or reduced to anyelectronic medium or machine readable form without prior consent, in writing, from the CompactFlash Association.The CFA logo is a trademark of the CompactFlash Association.Product names mentioned herein are for identification purposes only and may be trademarks and/or registeredtrademarks of their respective companies.© 1998-99, CompactFlash Association. All rights reserved.
標簽: 技術資料
上傳時間: 2013-10-08
上傳用戶:stewart·
Agilent AN 154 S-Parameter Design Application Note S參數的設計與應用 The need for new high-frequency, solid-state circuitdesign techniques has been recognized both by microwaveengineers and circuit designers. These engineersare being asked to design solid state circuitsthat will operate at higher and higher frequencies.The development of microwave transistors andAgilent Technologies’ network analysis instrumentationsystems that permit complete network characterizationin the microwave frequency rangehave greatly assisted these engineers in their work.The Agilent Microwave Division’s lab staff hasdeveloped a high frequency circuit design seminarto assist their counterparts in R&D labs throughoutthe world. This seminar has been presentedin a number of locations in the United States andEurope.From the experience gained in presenting this originalseminar, we have developed a four-part videotape, S-Parameter Design Seminar. While the technologyof high frequency circuit design is everchanging, the concepts upon which this technologyhas been built are relatively invariant.The content of the S-Parameter Design Seminar isas follows:
標簽: S參數
上傳時間: 2013-12-19
上傳用戶:aa54
Today in many applications such as network switches, routers, multi-computers,and processor-memory interfaces, the ability to integrate hundreds of multi-gigabit I/Os is desired to make better use of the rapidly advancing IC technology.
上傳時間: 2013-10-30
上傳用戶:ysjing