基于單片機控制的二氧化碳濃度測試計:基于CDM4161二氧化碳氣體濃度測試模塊以及ATtiny26單片機,提出了一種二氧化碳濃度測試計的設計方案。該方案具有硬件電路簡單、成本低、可靠性高、測量準確等優點,具有較高的實用價值。 Abstract: Abstract:A desigh scheme of CO2 concentration meter based on CDM4161carbon dioxide concentration test module and ATtiny26micro-controller is presented in this paper.The design scheme features simple hardware circuit,low-cost,high reli-ability,accurate measurement and it has a high practical value.
The μPSD32xx family, from ST, consists of Flash programmable system devices with a 8032 MicrocontrollerCore. Of these, the μPSD3234A and μPSD3254A are notable for having a complete implementationof the USB hardware directly on the chip, complying with the Universal Serial Bus Specification, Revision1.1.This application note describes a demonstration program that has been written for the DK3200 hardwaredemonstration kit (incorporating a μPSD3234A device). It gives the user an idea of how simple it is to workwith the device, using the HID class as a ready-made device driver for the USB connection.IN-APPLICATION-PROGRAMMING (IAP) AND IN-SYSTEM-PROGRAMMING (ISP)Since the μPSD contains two independent Flash memory arrays, the Micro Controller Unit (MCU) can executecode from one memory while erasing and programming the other. Product firmware updates in thefield can be reliably performed over any communication channel (such as CAN, Ethernet, UART, J1850)using this unique architecture. For In-Application-Programming (IAP), all code is updated through theMCU. The main advantage for the user is that the firmware can be updated remotely. The target applicationruns and takes care on its own program code and data memory.IAP is not the only method to program the firmware in μPSD devices. They can also be programmed usingIn-System-Programming (ISP). A IEEE1149.1-compliant JTAG interface is included on the μPSD. Withthis, the entire device can be rapidly programmed while soldered to the circuit board (Main Flash memory,Secondary Boot Flash memory, the PLD, and all configuration areas). This requires no MCU participation.The MCU is completely bypassed. So, the μPSD can be programmed or reprogrammed any time, anywhere, even when completely uncommitted.Both methods take place with the device in its normal hardware environment, soldered to a printed circuitboard. The IAP method cannot be used without previous use of ISP, because IAP utilizes a small amountof resident code to receive the service commands, and to perform the desired operations.
This application note shows how to write an Inter Integrated Circuit bus driver (I²C) for the Philips P90CL301micro-controller.It is not only an example of writing a driver, but it also includes a set of application interface software routines toquickly implement a complete I²C multi-master system application.For specific applications the user will have to make minimal changes in the driver program. Using the drivermeans linking modules to your application software and including a header-file into the application sourceprograms. A small example program of how to use the driver is listed.The driver supports i.a. polled or interrupt driven message handling, slave message transfers and multi-mastersystem applications. Furthermore, it is made suitable for use in conjunction with real time operating systems, likepSOS+.
This application note demonstrates how to write an Inter Integrated Circuit bus driver (I2C) for the XA-S3 16-bitMicrocontroller from Philips Semiconductors.Not only the driver software is given. This note also contains a set of (example) interface routines and a smalldemo application program. All together it offers the user a quick start in writing a complete I2C system applicationwith the PXAS3x.The driver routines support interrupt driven single master transfers. Furthermore, the routines are suitable foruse in conjunction with real time operating systems.
Abstract: This application note explains the hardware of different types of 1-Wire® interfaces and software examples adapted to this hardware with a focus on serial ports. Depending on the types of iButtons required for a project and the type of computer to be used, the most economical interface is easily found. The hardware examples shown are basically two different types: 5V general interface and 12V RS-232 interface. Within the 5V group a common printed circuit board could be used for all circuits described. The variations can be achieved by different populations of components. The same principal is used for the 12V RS-232 interface. The population determines if it is a Read all or a Read/Write all type of interface.
There are other possible circuit implementations to create a 1-Wire interface. The circuits described in this application note cover many different configurations. For a custom application, one of the described options can be adapted to meet individual needs.
The 87LPC76X Microcontroller combines in a small package thebenefits of a high-performance microcontroller with on-boardhardware supporting the Inter-Integrated Circuit (I2C) bus interface.The 87LPC76X can be programmed both as an I2C bus master, aslave, or both. An overview of the I2C bus and description of the bussupport hardware in the 87LPC76X microcontrollers appears inapplication note AN464, Using the 87LPC76X Microcontroller as anI2C Bus Master. That application note includes a programmingexample, demonstrating a bus-master code. Here we show anexample of programming the microcontroller as an I2C slave.The code listing demonstrates communications routines for the87LPC76X as a slave on the I2C bus. It compliments the program inAN464 which demonstrates the 87LPC76X as an I2C bus master.One may demonstrate two 87LPC76X devices communicating witheach other on the I2C bus, using the AN464 code in one, and theprogram presented here in the other. The examples presented hereand in AN464 allow the 87LPC76X to be either a master or a slave,but not both. Switching between master and slave roles in amultimaster environment is described in application note AN435.The software for a slave on the bus is relatively simple, as theprocessor plays a relatively passive role. It does not initiate bustransfers on its own, but responds to a master initiating thecommunications. This is true whether the slave receives or transmitsdata—transmission takes place only as a response to a busmaster’s request. The slave does not have to worry about arbitrationor about devices which do not acknowledge their address. As theslave is not supposed to take control of the bus, we do not demandit to resolve bus exceptions or “hangups”. If the bus becomesinactive the processor simply withdraws, not interfering with themaster (or masters) on the bus which should (hopefully) try toresolve the situation.
The STWD100 watchdog timer circuits are self-contained devices which prevent systemfailures that are caused by certain types of hardware errors (non-responding peripherals,bus contention, etc.) or software errors (bad code jump, code stuck in loop, etc.).The STWD100 watchdog timer has an input, WDI, and an output, WDO (see Figure 2). Theinput is used to clear the internal watchdog timer periodically within the specified timeoutperiod, twd (see Section 3: Watchdog timing). While the system is operating correctly, itperiodically toggles the watchdog input, WDI. If the system fails, the watchdog timer is notreset, a system alert is generated and the watchdog output, WDO, is asserted (seeSection 3: Watchdog timing).The STWD100 circuit also has an enable pin, EN (see Figure 2), which can enable ordisable the watchdog functionality. The EN pin is connected to the internal pull-downresistor. The device is enabled if the EN pin is left floating.
Abstract: This application note discusses the development and deployment of 3G cellular femtocell base stations. The technicalchallenges for last-mile residential connectivity and adding system capacity in dense urban environments are discussed, with 3Gfemtocell base stations as a cost-effective solution. Maxim's 3GPP TS25.104-compliant transceiver solution is presented along withcomplete radio reference designs such as RD2550. For more information on the RD2550, see reference design 5364, "FemtocellRadio Reference Designs Using the MAX2550–MAX2553 Transceivers."
為了在CDMA系統中更好地應用QDPSK數字調制方式,在分析四相相對移相(QDPSK)信號調制解調原理的基礎上,設計了一種QDPSK調制解調電路,它包括串并轉換、差分編碼、四相載波產生和選相、相干解調、差分譯碼和并串轉換電路。在MAX+PLUSⅡ軟件平臺上,進行了編譯和波形仿真。綜合后下載到復雜可編程邏輯器件EPM7128SLC84-15中,測試結果表明,調制電路能正確選相,解調電路輸出數據與QDPSK調制輸入數據完全一致,達到了預期的設計要求。
Abstract:
In order to realize the better application of digital modulation mode QDPSK in the CDMA system, a sort of QDPSK modulation-demodulation circuit was designed based on the analysis of QDPSK signal modulation-demodulation principles. It included serial/parallel conversion circuit, differential encoding circuit, four-phase carrier wave produced and phase chosen circuit, coherent demodulation circuit, difference decoding circuit and parallel/serial conversion circuit. And it was compiled and simulated on the MAX+PLUSⅡ software platform,and downloaded into the CPLD of EPM7128SLC84-15.The test result shows that the modulation circuit can exactly choose the phase,and the output data of the demodulator circuit is the same as the input data of the QDPSK modulate. The circuit achieves the prospective requirement of the design.