The CAT93C46 is a 1 kb Serial EEPROM memory device which isconfigured as either 64 registers of 16 bits (ORG pin at VCC) or 128registers of 8 bits (ORG pin at GND). Each register can be written (orread) serially by using the DI (or DO) pin. The CAT93C46 features aself−timed internal write with auto−clear. On−chip Power−On Resetcircuit protects the internal Logic against powering up in the wrongstate.
IntroductionAs chip designers pack more functions into ICs,pin counts continue to grow and the space betweenpins keeps shrinking. Pin spacings of 0.5 mm and0.65 mm are not at all uncommon. The power ofthese new ICs is wonderful, to be sure, but trou-bleshooting them can be a chore because connect-ing scopes and Logic analyzers has become muchmore difficult and less dependable.
The PCA9549 provides eight bits of high speed TTL-compatible bus switching controlledby the I2C-bus. The low ON-state resistance of the switch allows connections to be madewith minimal propagation delay. Any individual A to B channel or combination of channelscan be selected via the I2C-bus, determined by the contents of the programmable Controlregister. When the I2C-bus bit is HIGH (Logic 1), the switch is on and data can flow fromPort A to Port B, or vice versa. When the I2C-bus bit is LOW (Logic 0), the switch is open,creating a high-impedance state between the two ports, which stops the data flow.An active LOW reset input (RESET) allows the PCA9549 to recover from a situationwhere the I2C-bus is stuck in a LOW state. Pulling the RESET pin LOW resets the I2C-busstate machine and causes all the bits to be open, as does the internal power-on resetfunction.
The ISO7220 and ISO7221 are dual-channel digital isolators. To facilitate PCB layout, the channels are orientedin the same direction in the ISO7220 and in opposite directions in the ISO7221. These devices have a Logic inputand output buffer separated by TI’s silicon-dioxide (SiO2) isolation barrier, providing galvanic isolation of up to4000 V. Used in conjunction with isolated power supplies, these devices block high voltage, isolate grounds, andprevent noise currents on a data bus or other circuits from entering the local ground and interfering with ordamaging sensitive circuitry.
Designing Boards with Atmel AT89C51, AT89C52, AT89C1051, and AT89C2051 for Writing Flash at In-Circuit Test:Recent improvements in chips andtesters have made it possible for thetester to begin taking over the role traditionallyassigned to the PROM programmer.Instead of having a PROM programmerwrite nonvolatile memoriesbefore assembling the board, the in-circuittester writes them during in-circuittesting operations. Many Teradyne Z18-series testers are now in use loadingcode into nonvolatile memories, microcontrollersand in-circuit programmable Logic devices. The purpose of this note is to explain how the Z18 approaches the writing task for Atmel AT89C series IC’s,so that designers of boards using these chips can get the best results.
The 87C576 includes two separate methods of programming theEPROM array, the traditional modified Quick-Pulse method, and anew On-Board Programming technique (OBP).Quick Pulse programming is a method using a number of devicepins in parallel (see Figure 1) and is the traditional way in which87C51 family members have been programmed. The Quick-Pulsemethod supports the following programming functions:– program USER EPROM– verify USER EPROM– program KEY EPROM– program security bits– verify security bits– read signature bytesThe Quick-Pulse method is quite easily suited to standardprogramming equipment as evidenced by the numerous vendors of87C51 compatible programmers on the market today. Onedisadvantage is that this method is not well suited to programming inthe embedded application because of the large number of signallines that must be isolated from the application. In addition, parallelsignals from a programmer would need to be cabled to theapplication’s circuit board, or the application circuit board wouldneed to have Logic built-in to perform the programming functions.These requirements have generally made in-circuit programmingusing the modified Quick Pulse method impractical in almost all87C51 family applications.
Designing withProgrammable Logicin an Analog WorldProgrammable Logic devicesrevolutionized digital design over 25years ago, promising designers a blankchip to design literally any functionand program it in the field. PLDs canbe low-Logic density devices that usenonvolatile sea-of-gates cells calledcomplex programmable Logic devices(CPLDs) or they can be high-densitydevices based on SRAM look-up tables
Designing withProgrammable Logicin an Analog WorldProgrammable Logic devices revolutionizeddigital design over 25 years ago,promising designers a blank chip todesign literally any function and programit in the field. PLDs can be low-Logicdensity devices that use nonvolatilesea-of-gates cells called complexprogrammable Logic devices (CPLDs)or they can be high-density devicesbased on SRAM look-up tables (LUTs)