物流分析工具包。Facility location: Continuous minisum facility location, alternate location-allocation (ALA) procedure, discrete uncapacitated facility location
Vehicle routing: VRP, VRP with time windows, traveling salesman problem (TSP)
Networks: Shortest path, min cost network flow, minimum spanning tree problems
Geocoding: U.S. city or ZIP code to longitude and latitude, longitude and latitude to nearest city, Mercator projection plotting
Layout: Steepest descent pairwise interchange (SDPI) heuristic for QAP
Material handling: Equipment selection
General purpose: Linear programming using the revised simplex method, mixed-integer linear programming (MILP) branch and bound procedure
Data: U.S. cities with populations of at least 10,000, U.S. highway network (Oak Ridge National Highway Network), U.S. 3- and 5-digit ZIP codes
數(shù)字運(yùn)算,判斷一個(gè)數(shù)是否接近素?cái)?shù)
A Niven number is a number such that the sum of its digits divides itself. For example, 111 is a Niven number because the sum of its digits is 3, which divides 111. We can also specify a number in another base b, and a number in base b is a Niven number if the sum of its digits divides its value.
Given b (2 <= b <= 10) and a number in base b, determine whether it is a Niven number or not.
Input
Each line of input contains the base b, followed by a string of digits representing a positive integer in that base. There are no leading zeroes. The input is terminated by a line consisting of 0 alone.
Output
For each case, print "yes" on a line if the given number is a Niven number, and "no" otherwise.
Sample Input
10 111
2 110
10 123
6 1000
8 2314
0
Sample Output
yes
yes
no
yes
no
51串行令牌格式 a51編譯
Read data from serial port
and write into buffer DPTR pointed in XRAM if a data frame is
received and calculate the check sum
if a information frame is received return control byte only