C8051F020單片機(jī)通過SPI接口驅(qū)動四線電阻式觸摸屏控制器TSC2046,利用中斷方式驅(qū)動TSC2046設(shè)計(jì)軟件。介紹了觸摸屏的工作原理、TSC2046工作方式以及典型應(yīng)用電路。
Abstract:
The C8051F020 MCU is connected with the TSC2046 which is a 4-wire touch screen controller. The TSC2046 is controlled by interrupt mode, the? operation principle of touch screen is introduced. The operation mode of TSC2046 and typical application circuit are also discussed.
針對目前采用的熱敏電阻測量方法,提出了采用單總線數(shù)字式溫度傳感器DS18B20和單片機(jī)組成的新型溫度測量儀。介紹DS18B20的結(jié)構(gòu)和工作原理,以及單總線工作原理,給出了由Mega8單片機(jī)和DS18B20構(gòu)成的單總線溫度測量儀的硬件電路及軟件流程圖。經(jīng)試驗(yàn)基于單總線器件DS18B20的溫度測量儀,具有測量準(zhǔn)確、測溫范圍寬、體積小、控制方便等優(yōu)點(diǎn)。
Abstract:
This paper brings forward a new temperature meter composed of 1-Wire temperature sensor DS18B20 and MCU which has advantage of the thermistor. In the article, the DS18B20's structure and controlling principles are introduced and hardware circuit and software diagram of the temperature meter are given.After been tested,the temperature meter has the advantages of accurate measurement, wide temperature range, small volume and convenient controlling.
基于幅移鍵控技術(shù)ASK(Amplitude-Shift Keying),以C8051F340單片機(jī)作為監(jiān)測終端控制器,C8051F330D單片機(jī)作為探測節(jié)點(diǎn)控制器,采用半雙工的通信方式,通過監(jiān)控終端和探測節(jié)點(diǎn)的無線收發(fā)電路,實(shí)現(xiàn)數(shù)據(jù)的雙向無線傳輸。收發(fā)電路采用直徑為0.8 mm的漆包線自行繞制成圓形空心線圈天線,天線直徑為(3.4±0.3)cm。試驗(yàn)表明,探測節(jié)點(diǎn)與監(jiān)測終端的通信距離為24 cm,通過橋接方式,節(jié)點(diǎn)收發(fā)功率為102 mW時,節(jié)點(diǎn)間的通信距離可達(dá)20 cm。與傳統(tǒng)無線收發(fā)模塊相比,該無線收發(fā)電路在受體積、功耗、成本限制的場合有廣闊的應(yīng)用前景。
Abstract:
Based on ASK technology and with the C8051F340 and C8051F330D MCU as the controller, using half-duplex communication mode, this paper achieves bi-directional data transfer. Transceiver circuit constituted by enameled wire which diameter is 0.8mm and wound into a diameter (3.4±0.3) cm circular hollow coil antenna. Tests show that the communication distance between detection and monitoring of the terminal is 24cm,the distance is up to 20cm between two nodes when using the manner of bridging and the node transceiver power is 102mW. Compared with the conventional wireless transceiver modules, the circuit has wide application prospect in small size, low cost and low power consumption and other characteristics.
1 FEATURES· Single chip LCD controller/driver· 1 or 2-line display of up to 24 characters per line, or2 or 4 lines of up to 12 characters per line· 5 ′ 7 character format plus cursor; 5 ′ 8 for kana(Japanese syllabary) and user defined symbols· On-chip:– generation of LCD supply voltage (external supplyalso possible)– generation of intermediate LCD bias voltages– oscillator requires no external components (externalclock also possible)· Display data RAM: 80 characters· Character generator ROM: 240 characters· Character generator RAM: 16 characters· 4 or 8-bit parallel bus or 2-wire I2C-bus interface· CMOS/TTL compatible· 32 row, 60 column outputs· MUX rates 1 : 32 and 1 : 16· Uses common 11 code instruction set· Logic supply voltage range, VDD - VSS: 2.5 to 6 V· Display supply voltage range, VDD - VLCD: 3.5 to 9 V· Low power consumption· I2C-bus address: 011101 SA0.
The MSP-FET430PIF is a Parallel Port interface (does not include target board) that is used to program and debug MSP430 FET tools and test boards through the JTAG interface. This interface is included in our FET tools, but sold without the development board. This interface uses a Parallel PC Port to communicate to the Debugger Software (IAR Kickstart software included) running on the PC. The interface uses the standard 14 pin header to communicate to the MSP430 device using the standard JTAG protocol.
The flash memory can be erased and programmed in seconds with only a few keystrokes, and since the MSP430 flash is extremely low power, no external power supply is required. The tool has an integrated software environment and connects directly to the PC which greatly simplifies the set-up and use of the tool. The flash development tool supports development with all MSP430 flash parts.
Features
MSP430 debugging interface to connect a MSP430-Flash-device to a Parallel port on a PC
Supports JTAG debug protocol (NO support for Spy-Bi-Wire (2-wire JTAG) debug protocol, Spy-Bi-Wire (2-wire JTAG) is supported by MSP-FET430UIF)
Parallel Port cable and a 14-conductor target cable
Full documentation on CD ROM
Integrated IAR Kickstart user interface which includes:
Assembler
Linker
Limulator
Source-level debugger
Limited C-compiler
Technical specifications:
Backwardly compatable with existing FET tool boards.
The MSP-FET430U14 is a powerful flash emulation tool to quickly begin application development on the MSP430 MCU. It includes USB debugging interface used to program and debug the MSP430 in-system through the JTAG interface or the pin saving Spy Bi-Wire (2-wire JTAG) protocol. The flash memory can be erased and programmed in seconds with only a few keystrokes, and since the MSP430 flash is ultra-low power, no external power supply is required.
The debugging tool interfaces the MSP430 to the included integrated software environment and includes code to start your design immediately. The MSP-FET430UIF development tools supports development with all MSP430 flash devices